SENTIMENT ANALYSIS DESIGN OF PRODUCT REVIEWS IN THE MARKETPLACE USING NAIVE BAYES CLASSIFIER METHOD; A CASE STUDY IN TOKOPEDIA

Authors

  • Widnyani, N.M Program Studi Bisnis Digital, Fakultas Bisnis Sosial Teknologi dan Humaniora Universitas Bali Internasional
  • Aristayudha A.A.N.B Program Studi Bisnis Digital, Fakultas Bisnis Sosial Teknologi dan Humaniora Universitas Bali Internasional
  • Sugianta, I.K.A Program Studi Bisnis Digital, Fakultas Bisnis Sosial Teknologi dan Humaniora Universitas Bali Internasional

Keywords:

Naive Bayes Classifier, sentiment analysis,

Abstract

This study aimed at analyzing sentiment of product purchase reviews on the Tokopedia marketplace using the Naive Bayes Classifier (NBC) algorithm.  It was a qualitative study which was done in Bali International University. Two types of data contained in this study namely, primary data and secondary data. Product review became the primary data and information from reference books and journals became the secondary data.  It was a qualitative study which focused on sentiment analysis of product reviews in Tokopedia by using Naïve Bayes Classifier (NBC) method. The NBC method is commonly used as a probabilistic learning method to find the highest probability value in classifying the data and getting the appropriate category. There were some staged to be followed such as problem analysis and data collection, library research of sentiment analysis by using NBC method, sentiment analysis process by using NBC method, NBC method testing, and conclusion. The data were collected from research study, observation, and questionnaires. From the three data collection models, data analysis was carried out with the following models such as data reduction, data display, and conclusion. The result of this study showed that the result of respondents answered, or sentiment matched to the sentiment classification system designed

Downloads

Download data is not yet available.

References

. Agusta, L. (2009). Perbandingan Algoritma Stemming Porter dengan Algoritma Nazief & Adriani Untuk Stemming Dokumen Teks Bahasa Indonesia’, in Konferensi Nasional Sistem dan Informatika.

. Apriadi, D. and Saputra, A. Y. (2017). E-CommerceBerbasis Marketplace Dalam Upaya Mempersingkat Distribusi Penjualan Hasil Pertanian’, JURNAL RESTI, 1(2).

. Bustami (2014). Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah Asuransi. Jurnal Informatika, 8(1). 884–898. Retrieved from: doi 10.26555/jifo.v8i1.a2086.

. Gunawan, B., Pratiwi, H. S. and Pratama, E. E. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. Jurnal Edukasi dan Penelitian Informatika (JEPIN), 4(2). Retrieved from: doi 10.26418/jp.v4i2.27526.

. Han, J. K. (2006) Concept and Techniques. Morgan Kaufmann.

. Indraloka, D. S. & Santosa, B. (2017). Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia. Jurnal Sains dan Seni ITS, 6(2). 6–11. Retrieved from: doi 10.12962/j23373520.v6i2.24419.

. Keller, K. L. & Lehmann, D. R. (2006). Brands and branding: Research findings and future priorities. Marketing Science, 25(6), 740–759. Retrieved from: doi10.1287/mksc.1050.0153.

. Kusumadewi, S. (2009). Klasifikasi Status Gizi Menggunakan Naive Bayesian Classification’, CommIT (Communication and Information Technology) Journal, 3(1). Retrieved from: doi 10.21512/commit.v3i1.506.

. Lukito, Y. & Chrismanto, A. R. (2015). Perbandingan Metode-Metode Klasifikasi untuk Indoor Positioning System. Jurnal Teknik Informatika dan Sistem Informasi, 1(2). 123–131. Retrieved from: doi 10.28932/jutisi.v1i2.373.

. Marco, R. &Ningrum, B. T. P. (2017). Analisis Sistem Informasi E-Marketplace Pada Usaha Kecil Menengah (UKM) Kerajinan Bambu Dusun Brajan. Jurnal Ilmiah DASI, 18(2).

. Muktafin, E. H., Kusrini, K. & Luthfi, E. T. (2020). Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Eksplora Informatika, 10(1). 32–42. Retrieved from: doi 10.30864/eksplora.v10i1.390.

. Nasukawa, T., & Yi, J. (2003). Sentiment Analysis: Capturing Favorability Using Natural Language Processing. Proceedings of the 2nd International Conference on Knowledge Capture.

. Nazief, B., & dan Adriani, M. ConfixStripping: Approach to Stemming Algorithm for Bahasa Indonesia, Faculty of Computer Science University of Indonesia.

. Putra, G. W. & Sudarma, M. S. K. (2016). Klasifikasi Teks Bahasa Bali dengan Metode Supervised Learning Naïve Bayes Classifier. Teknologi Elektro, 15(2).

. Rusdiaman, D. & Rosiyadi, D. (2019). Analisa Sentimen Terhadap Tokoh Publik Menggunakan Metode Naïve Bayes Classifier Dan Support Vector Machine. Jornal of Computer Engineering System and Science, 4(2), 230–235.

. Samith, K. S. (2019). Sentiment Analysis System for Product Review: A Survey. ICETET, 1(1).

. Triawati, C. (2009). Metode Pembobotan Statistical Concept Based untuk Klastering dan Kategorisasi Dokumen Berbahasa Indonesia. Bandung: Institut Teknologi Telkom Bandung.

Downloads

Published

2022-06-29

How to Cite

Widnyani, N.M, A.A.N.B, A. . ., & Sugianta, I.K.A. (2022). SENTIMENT ANALYSIS DESIGN OF PRODUCT REVIEWS IN THE MARKETPLACE USING NAIVE BAYES CLASSIFIER METHOD; A CASE STUDY IN TOKOPEDIA. Jurnal Ekonomi, 11(01), 373–382. Retrieved from https://ejournal.seaninstitute.or.id/index.php/Ekonomi/article/view/259