PERFORMANCE EXPECTANCY FACTORS AND OTHER FACTORS AFFECTING INTENTION TO RECOMMEND DANA APPLICATIONS IN TANGERANG DISTRICT

Authors

  • Dihin Septyanto Management Study Program, Faculty of Economics and Business, Universitas Esa Unggul, Indonesia
  • Silvia Angelita Management Study Program, Faculty of Economics and Business, Universitas Esa Unggul, Indonesia
  • Rojuaniah Rojuaniah Management Study Program, Faculty of Economics and Business, Universitas Esa Unggul, Indonesia
  • Ikramina Larasati Hazrati Havidz Management Study Program, Faculty of Economics and Business, Universitas Esa Unggul, Indonesia
  • Diana Fajarwati Management Study Program, Faculty of Economics and Business, Universitas Esa Unggul, Indonesia

Keywords:

Intention to Adopt, Intention to Recommend, Performance Expectancy, Effort Expectancy, Social Influence, Hedonic Motivation, Lifestyle Compatibility, Perceived Trust, Dana Application

Abstract

The purpose of this research is to know the factors affecting the intention to recommend Dana applications in the Tangerang district with the intention to adopt as an intervening variable. The population in this study are E-wallet users throughout Indonesia whose numbers are unknown. To determine the sample size, this study used purposive sampling so that 135 respondents were used as samples. Data analysis using SmartPLS version 3.0. There are several findings in this study, namely Performance Expectancy, Effort Expectancy, Hedonic Motivation, Lifestyle Compatibility, Perceived Trust, and Intention to Adopt Dana have a positive effect on Intention to Recommend Dana. Meanwhile, Social Influence and Facilitating Conditions have no significant effect on Intention to Recommend Dana.

Downloads

Download data is not yet available.

References

Abrahão, R. de S., Moriguchi, S. N., & Andrade, D. F. (2016). Intention of adoption of mobile payment: An analysis in the light of the Unified Theory of Acceptance and Use of Technology (UTAUT). RAI Revista de Administração e Inovação, 13(3), 221–230. https://doi.org/10.1016/j.rai.2016.06.003

Aji, H. M., Berakon, I., & Md Husin, M. (2020). COVID-19 and e-wallet usage intention: A multigroup analysis between Indonesia and Malaysia. Cogent Business and Management, 7(1). https://doi.org/10.1080/23311975.2020.1804181

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior.

Alalwan, A. A. (2018). Investigating the impact of social media advertising features on customer purchase intention. International Journal of Information Management, 42(June), 65–77. https://doi.org/10.1016/j.ijinfomgt.2018.06.001

Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002

Almaiah, M. A., Al-rahmi, A., Alturise, F., Hassan, L., Lutfi, A., Alrawad, M., Alkhalaf, S., Al-rahmi, W. M., Al-sharaieh, S., & Aldhyani, T. H. H. (2022). Investigating the Effect of Perceived Security , Perceived Trust , and Information Quality on Mobile Payment Usage through Near-Field Communication ( NFC ) in Saudi Arabia.

Armstrong, G., Adam, S., Denize, S., & Kotler, P. (2015). Principles of marketing.

Bahthiar, R., & Hariadi, P. (2011). Analisis Pengaruh Kualitas Pelayanan Terhadap Niat Merekomendasikan Dan Mengulangi Kunjungan Yang Di Mediasi Oleh Kepuasan Pengunjung (Pemecahan Masalah Fenomena Bisnis Owabong). 14(2), 119–132.

Belanche, D., Flavián, M., & Rueda, A. P. (2020). Mobile apps use and WOM in the food delivery sector: The role of planned behavior, perceived security and customer lifestyle compatibility. Sustainability, 12(10), 1–21.

Blythe, J. (2005). Essentials of marketing planning. In Quick Printing (Vol. 26, Issue 7).

Boateng, H., Adam, D. R., Okoe, A. F., & Dorson, T. A. (2016). Assessing the determinants of internet banking adoption intentions: A social cognitive theory perspective. Computers in Human Behavior, 65, 468–478. https://doi.org/10.1016/j.chb.2016.09.017

Broman Toft, M., Schuitema, G., & Thøgersen, J. (2014). Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology. Applied Energy, 134(2014), 392–400. https://doi.org/10.1016/j.apenergy.2014.08.048

Cabanillas, F. J. L., Fernández, J. S., & Leiva, F. M. (2014). Role of gender on acceptance of mobile payment. Industrial Management and Data Systems, 114(2), 220–240. https://doi.org/10.1108/IMDS-03-2013-0137

Casalo, L. V, Flavian, C., & Ibanez, S. (2017). Antecendents of consumer intention to follow and recommend an instagram account. Emerald Insight.

Chawla, D., & Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India – An empirical study. International Journal of Bank Marketing, 37(7), 1590–1618. https://doi.org/10.1108/IJBM-09-2018-0256

Chen, W. C., Chen, C. W., & Chen, W. K. (2019). Drivers of mobile payment acceptance in China: An empirical investigation. Information (Switzerland), 10(12), 1–20. https://doi.org/10.3390/info10120384

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.5962/bhl.title.33621

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 15(8), 982–1002.

Elizar, C., Indrawati, R., Yanuar, T., & Syah, R. (2020). Service Quality, Customer Satisfaction, Customer Trust, and Customer Loyalty in Service of Paediatric Polyclinic Over Private H Hospital of East Jakarta, Indonesia. Journal of Multidisciplinary Academic, 4(2), 105–111.

Financer.com. (2022). Apa itu Dana Dompet Digital ? https://financer.com/id/perusahaan/dana/

Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management and Data Systems, 115(9), 1–35. https://doi.org/10.1108/IMDS-03-2015-0087

Ghozali, I. (2014). Aplikasi Analisis Multivariate Dengan Program IBM SPSS 21 Update PLS Regresi.

Ghozali, I. (2016). Aplikasi analisis multivariete dengan program IBM SPSS 23 (CET. III).

Ghozali, I. (2018). Aplikasi Analisis Multivariate Dengan Program IBM SPSS 25 Ed. 9, Cet. IX.

Gold, G. J. (2011). Review of Predicting and Changing Behavior: The Reasoned Action Approach. The Journal of Social Psychology, 151(3), 382–385. https://doi.org/10.1080/00224545.2011.563209

Gupta, K., & Arora, N. (2019). Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model: An Indian perspective. South Asian Journal of Business Studies, 9(1), 88–114. https://doi.org/10.1108/SAJBS-03-2019-0037

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM).

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). The Results of PLS-SEM Article information. European Business Review, 1–39.

Hasya, R. (2022). Ini 10 E-Wallet yang Paling Sering Dipakai Masyarakat Indonesia Tahun 2022. GoodStats. https://goodstats.id/article/ini-10-e-wallet-yang-paling-sering-dipakai-masyarakat-indonesia-M4TA4

Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18(1), 38–52. https://doi.org/10.1002/dir.10073

Herrero, A., Perez, A., & Bosque, I. R. del. (2014). Values and Lifestyle S in the Adoption of new technologies applying vals scale. Academy of Marketing Studies Journal, 18(2), 37–56.

Hong, S. J., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834. https://doi.org/10.1016/j.dss.2006.03.009

Hoque, M. Z., & Alam, M. N. (2018). What determines the purchase intention of liquid milk during a food security crisis? The role of perceived trust, knowledge, and risk. Sustainability (Switzerland), 10(10), 1–22. https://doi.org/10.3390/su10103722

Hussain, M., Mollik, A. T., Johns, R., & Rahman, M. S. (2018). M-payment adoption for bottom of pyramid segment: An empirical investigation. International Journal of Bank Marketing, 37(1), 362–381. https://doi.org/10.1108/IJBM-01-2018-0013

Institute, B. (2023). Dompet Digital Naik Daun, Membetot Minat Kala Pandemi. https://www.bi.go.id/id/bi-institute/BI-Epsilon/Pages/Dompet-Digital--Naik-Daun,-Membetot-Minat-Kala-Pandemi.aspx

Kiconco, R. I., Rooks, G., & Snijders, C. (2019). Learning mobile money in social networks: Comparing a rural and urban region in Uganda. Computers in Human Behavior, 103, 214–225. https://doi.org/10.1016/j.chb.2019.09.005

Kim, Y. J., & Hollingshead, A. B. (2015). Online Social Influence: Past, Present, and Future. Annals of the International Communication Association, 39(1), 163–192. https://doi.org/10.1080/23808985.2015.11679175

Lenggono, A., Syah, T. Y. R., & Negoro, D. A. (2019). The Relationship of Brand Communication, Brand Image, and Brand Trust To Brand Loyalty of Samsung Cellular Phone Product. Russian Journal of Agricultural and Socio-Economic Sciences, 88(4), 138–143. https://doi.org/10.18551/rjoas.2019-04.18

Leong, L. Y., Hew, T. S., Tan, G. W. H., & Ooi, K. B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604–5620. https://doi.org/10.1016/j.eswa.2013.04.018

Liébana-Cabanillas, F., Singh, N., Kalinic, Z., & Carvajal-Trujillo, E. (2021). Examining the determinants of continuance intention to use and the moderating effect of the gender and age of users of NFC mobile payments: A multi-analytical approach. Information Technology and Management, 22(2), 133–161. https://doi.org/10.1007/s10799-021-00328-6

Lim, F.-W., Ahmad, F., Nizam, A., & Talib, B. A. (2019). Behavioural intention towards using electronic wallet: A conceptual framework in the light of the unified theory of acceptance and use of technology (utaut). Imperial Journal of Interdisciplinary Research (IJIR) Peer Reviewed-International Journal, 5(1), 79–86.

Lin, H. F. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International Journal of Information Management, 31(3), 252–260. https://doi.org/10.1016/j.ijinfomgt.2010.07.006

Lin, W. R., Lin, C. Y., & Ding, Y. H. (2020). Factors affecting the behavioral intention to adopt mobile payment: An empirical study in Taiwan. Mathematics, 8(10), 1–19. https://doi.org/10.3390/math8101851

Luyao, L., Al Mamun, A., Hayat, N., Yang, Q., Hoque, M. E., & Zainol, N. R. (2022). Predicting the intention to adopt wearable payment devices in China: The use of hybrid SEM-Neural network approach. Plos One, 17(8), 1–21. https://doi.org/10.1371/journal.pone.0273849

Mahwadha, W. I. (2019). Behavioral Intention of Young Consumers Towards E-Wallet Adoption: An Empirical Study Among Indonesian Users. Russian Journal of Agricultural and Socio-Economic Sciences, 85(1), 79–93. https://doi.org/10.18551/rjoas.2019-01.09

Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “big 3” of technology acceptance with privacy context. Decision Support Systems, 56(1), 103–114. https://doi.org/10.1016/j.dss.2013.05.010

Moe, W. W., Schweidel, D. A., & Moe, W. W. (2012). Online Product Opinions: Incidence , Evaluation , and Evolution. Marketing Science, 31(3), 372–386.

Mokoena, S. (2013). Engagement with and participation in online discussion forums. Turkish Online Journal of Educational Technology, 12(2), 97–105.

Morosan, C., & DeFranco, A. (2016). It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17–29. https://doi.org/10.1016/j.ijhm.2015.11.003

Morris, M. G., & Turner, J. M. (2001). Assessing users’ subjective quality of experience with the world wide web: An exploratory examination of temporal changes in technology acceptance. International Journal of Human Computer Studies, 54(6), 877–901. https://doi.org/10.1006/ijhc.2001.0460

Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers and Education, 109, 56–73. https://doi.org/10.1016/j.compedu.2017.02.005

Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61(2016), 404–414. https://doi.org/10.1016/j.chb.2016.03.030

Park, R. G. U. S. M. (2017). Quality of leadership and public service motivation: A social exchange perspective on employee engagement Introduction. The Eletronic Library, 34(1), 1–38.

Patil, P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54(February), 102144. https://doi.org/10.1016/j.ijinfomgt.2020.102144

Peñarroja, V., Sánchez, J., Gamero, N., Orengo, V., & Zornoza, A. M. (2019). The influence of organisational facilitating conditions and technology acceptance factors on the effectiveness of virtual communities of practice. Behaviour and Information Technology, 38(8), 1–14. https://doi.org/10.1080/0144929X.2018.1564070

Penney, E. K., Agyei, J., Boadi, E. K., Abrokwah, E., & Ofori-Boafo, R. (2021). Understanding Factors That Influence Consumer Intention to Use Mobile Money Services: An Application of UTAUT2 With Perceived Risk and Trust. SAGE Open, 11(3). https://doi.org/10.1177/21582440211023188

Pradana, M. (2022). Review Aplikasi Dana: Kelebihan dan Kekurangan. Investbro.Id. https://investbro.id/review-aplikasi-dana/

Prayag, G., Hosany, S., Muskat, B., & Chiappa, G. Del. (2015). Understanding the Relationships between Tourists’ Emotional Experiences, Perceived Overall Image, Satisfaction, and Intention to Recommend. Journal of Travel Research, 56(1), 1–14. https://doi.org/10.1177/0047287515620567

Qoala. (2021). Aplikasi Dana: Kegunaan, Kelebihan, Cara Daftar, dan Pakai. https://www.qoala.app/id/blog/berita/apa-itu-aplikasi-dana/

Rahi, S., Ghani, & Abd, M. (2018). Does gamified elements influence on user ’ s intention to adopt and intention to recommend internet banking ? Emerald Insight. https://doi.org/10.1108/IJILT-05-2018-0045

Rogers, E. M. (1983). Diffusion of innovations.

Shaw, N., & Sergueeva, K. (2019). The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. International Journal of Information Management, 45(October 2018), 44–55. https://doi.org/10.1016/j.ijinfomgt.2018.10.024

Sholahuddin. (2017). Pengaruh karakteristik inovasi terhadap niat mengadopsi Solopos Epaper. 1–30.

Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D.

Suyanto, & Kurniawan, T. A. (2019). Faktor yang Mempengaruhi Tingkat Kepercayaan Penggunaan FinTech pada UMKM Dengan Menggunakan Technology Acceptance Model (TAM). Akmenika: Jurnal Akuntansi Dan Manajemen, 16(1). https://doi.org/10.31316/akmenika.v16i1.166

Talukder, M. S., Chiong, R., Bao, Y., & Hayat Malik, B. (2018). Acceptance and use predictors of fitness wearable technology and intention to recommend: An empirical study. Industrial Management and Data Systems, 119(1), 170–188. https://doi.org/10.1108/IMDS-01-2018-0009

Tarhini, A., Elyas, T., Akour, M. A., & Al-Salti, Z. (2016). Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model. Higher Education Studies, 6(3), 72–89. https://doi.org/10.5539/hes.v6n3p72

Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization Utilization of Personal Computers Personal Computing: Toward a Conceptual Model of Utilization1. Source: MIS Quarterly, 15(1), 125–143.

Thong, J. Y. L., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human Computer Studies, 64(9), 799–810. https://doi.org/10.1016/j.ijhcs.2006.05.001

Turner, J. C. (1947). Social Influence.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance Of Information Technology: Toward a Unified View. Inorganic Chemistry Communications, 67(3), 95–98. https://doi.org/10.1016/j.inoche.2016.03.015

Venkatesh, V., Thong.L, J. Y., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.1109/MWSYM.2015.7167037

Venkatesh, V., & Zhang, X. (2014). Unified theory of acceptance and use of technology: U.S. vs. China. Journal of Global Information Technology Management, 13(1), 5–27. https://doi.org/10.1080/1097198X.2010.10856507

Widayat, W., Masudin, I., & Satiti, N. R. (2020). E-Money payment: Customers’ adopting factors and the implication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 6(3). https://doi.org/10.3390/JOITMC6030057

Wikipedia. (2023). Dana (Pembayaran). https://id.wikipedia.org/wiki/Dana_(pembayaran)

Wisyastuti, S. (2017). Integrated Marketing Communication Management: In Journal of Nonprofit & Public Sector Marketing. https://doi.org/10.1300/j054v03n02_03

Wong, K. T., Teo, T., & Goh, P. S. C. (2015). Understanding the intention to use interactive whiteboards: Model development and testing. Interactive Learning Environments, 23(6), 731–747. https://doi.org/10.1080/10494820.2013.806932

Wong, W. H., & Ying, Mo. W. (2019). A Study of Consumer Intention of Mobile Payment in Hong Kong, Based on Perceived Risk, Perceived Trust, Perceived Security and Technological Acceptance Model. Journal of Advanced Management Science, 7(2), 33–38. https://doi.org/10.18178/joams.7.2.33-38

Yang, A. S. (2009). Exploring adoption Difficulties in Mobile Banking Service. Canadian Journal of Administrative Sciences, 26, 136–149.

Yang, M., Al Mamun, A., Mohiuddin, M., Nawi, N. C., & Zainol, N. R. (2021a). Cashless transactions: A study on intention and adoption of e-wallets. Sustainability (Switzerland), 13(2), 1–18. https://doi.org/10.3390/su13020831

Yang, M., Al Mamun, A., Mohiuddin, M., Nawi, N. C., & Zainol, N. R. (2021b). Cashless transactions: A study on intention and adoption of e-wallets. Sustainability (Switzerland), 13(2), 1–18. https://doi.org/10.3390/su13020831

Yoganathan, D., & Kajanan, S. (2014). What drives fitness apps usage? An empirical evaluation. IFIP Advances in Information and Communication Technology, 429, 179–196. https://doi.org/10.1007/978-3-662-43459-8_12

Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760–767. https://doi.org/10.1016/j.chb.2010.01.013

Downloads

Published

2023-10-04

How to Cite

Septyanto, D., Angelita, S., Rojuaniah, R., Havidz, I. L. H., & Fajarwati, D. (2023). PERFORMANCE EXPECTANCY FACTORS AND OTHER FACTORS AFFECTING INTENTION TO RECOMMEND DANA APPLICATIONS IN TANGERANG DISTRICT. Jurnal Ekonomi, 12(04), 250–263. Retrieved from https://ejournal.seaninstitute.or.id/index.php/Ekonomi/article/view/2615

Most read articles by the same author(s)