Leveraging Data Analytics to Enhance Decision Making in Purchase Order Management: A Case Study in Aca Company
Keywords:
Data Analytics, Decision Making, Purchase Order Management, OptimizationAbstract
This study explores the application of data analytics to improve decision-making in purchase order management, focusing on a case study within ACA Company. In an era where data plays a pivotal role in business operations, leveraging analytics in purchase order management becomes essential for efficiency and informed decision-making. The research delves into the implementation of data analytics tools, their impact on optimizing purchase order processes, and the resulting enhancements in decision-making within ACA Company. Through a comprehensive analysis, the study aims to highlight the practical benefits and challenges encountered in integrating data analytics into purchase order management systems. The findings contribute valuable insights for organizations seeking to harness the power of data analytics for better decision outcomes in procurement.
Downloads
References
Johnson, P. F., Leenders, M. R., & Flynn, A. E. (2015). Purchasing and supply management. McGraw-Hill.
Hasan, S. (2016, August 19). Purchase management system. Unknown. https://www.researchgate.net/publication/307931035_Purchase_Management_System
Kesatriawan, A. E. R., Meliska, J. M., Indriani, M., & Putera, T. T. (2022). Kedudukan purchase order sebagai dasar kewajiban pembayaran. Notaire, 5(2), 179–196. https://doi.org/10.20473/ntr.v5i2.35000
Lysons, K., & Farrington, B. (2020a). Procurement and supply chain management. Pearson UK.
Rahimi, I., Gandomi, A. H., Fong, S. J., & Ülkü, M. A. (2020). Big data analytics in supply chain management: Theory and applications. CRC Press.
Giannakos, P. M. & I. O. P. & J. K. & M. (2018). Information Systems and e-Business Management. Information Systems and E-Business Management, 16(3), 547–578.
Bughin, J. (2016). Big data, Big bang? Journal of Big Data, 3(1), 1–14. https://doi.org/10.1186/s40537-015-0014-3
Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72–80. https://doi.org/10.1016/j.ijpe.2014.04.018
Al-Tarawneh, H. A. (2011). The main factors beyond decision making. Journal of Management Research, 4(1). https://doi.org/10.5296/jmr.v4i1.1184
Paunović, K. (2008). Data processing and storage. In Encyclopedia of Public Health (pp. 210–213). Springer Netherlands. http://dx.doi.org/10.1007/978-1-4020-5614-7_691
Huang, F. (2019). Data processing. In Encyclopedia of Big Data (pp. 1–4). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-32001-4_314-1
Pohl, M., Staegemann, D. G., & Turowski, K. (2022). The performance benefit of data analytics applications. Procedia Computer Science, 201, 679–683. https://doi.org/10.1016/j.procs.2022.03.090
Shabbir, M. Q., & Gardezi, S. B. W. (2020). Application of big data analytics and organizational performance: The mediating role of knowledge management practices. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00317-6
Kopanakis, I., Vassakis, K., & Mastorakis, G. (2016, June 22). Big data in data-driven innovation: The impact in enterprises’ performance. Unknown. https://www.researchgate.net/publication/305906536_Big_Data_in_Data-driven_Innovation_The_Impact_in_Enterprises’_Performance
Sousa, M. J., Pesqueira, A. M., Lemos, C., Sousa, M., & Rocha, Á. (2019). Decision-Making based on Big Data Analytics for People Management in Healthcare Organizations. Journal of Medical Systems, 43(9). https://doi.org/10.1007/s10916-019-1419-x
Sarker, I. H. (2021). Data science and analytics: An overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00765-8
AroraMeharban. (2021). Advantages of Python programming language in the world of big data: Poster poster abstract: Journal of Computing Sciences in Colleges: Vol 37, No 3. Journal of Computing Sciences in Colleges.
Subasi, A. (2020). Practical machine learning for data analysis using python. Academic Press.
Sahoo*, K., Samal, A. K., Pramanik, J., & Pani, S. K. (2019). Exploratory Data Analysis using Python. International Journal of Innovative Technology and Exploring Engineering, 8(12), 4727–4735. https://doi.org/10.35940/ijitee.l3591.1081219
Brownlee, J. (2020). Data preparation for machine learning: Data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery.
Apuke, O. D. (2017). Quantitative research methods : A synopsis approach. Kuwait Chapter of Arabian Journal of Business and Management Review, 6(11), 40–47. https://doi.org/10.12816/0040336
Kösters, M. (2022, May 6). The five benefits of data visualization. Deloitte Netherlands. https://www2.deloitte.com/nl/nl/pages/tax/articles/bps-the-five-benefits-of-data-visualization.html
Li, Q. (2020). Overview of data visualization. In Embodying Data (pp. 17–47). Springer Singapore. http://dx.doi.org/10.1007/978-981-15-5069-0_2