Enhancing Neurology Clinic Efficiency through Agile-Based Inventory Management System for Medical Supplies
Keywords:
Inventory Management, Agile Methodology, Medical Supplies, Neurology ClinicsAbstract
This study aims to enhance the efficiency of neurology clinics by implementing an Agile-based inventory management system for medical supplies. The identified problem is the need for more efficiency in managing medical supply inventory, which can lead to stock shortages, management errors, and delays in patient care. The methodology employed is an Agile approach in software development, starting from user needs analysis and application development to user acceptance evaluation. This research indicates the system's success in improving clinic efficiency by enhancing inventory management performance, improving the efficiency of medical supply procurement processes, reducing stock management errors, and enhancing user satisfaction. The contribution of this research lies in its theoretical implications for inventory management theory development in the healthcare field and its practical implications for efficient neurology clinic management. Suggestions for further research include exploring the integration of other technologies, such as Artificial Intelligence (AI) and the Internet of Things (IoT), to enhance automation and more sophisticated data management in healthcare inventory management systems. Thus, this research contributes significantly to developing adaptive and efficient inventory management systems in neurology clinics, which can serve as a foundation for further innovation in the healthcare industry
Downloads
References
Ablat, N., Ablimit, M., Sun, Y., Zhao, X., & Pu, X. (2022). Application of new imaging methods in the development of Chinese medicine. In Biomedicine and Phar-macotherapy (Vol. 153). Elsevier Masson s.r.l. https://doi.org/10.1016/j.biopha.2022.113470
Almeida, F., Simões, J., & Lopes, S. (2022). Exploring the Benefits of Combining DevOps and Agile. Future Internet, 14(2). https://doi.org/10.3390/fi14020063
Cronin, C. E. (2023). Contextualizing Appalachian health needs. In Lancet Regional Health - Americas (Vol. 18). Elsevier Ltd. https://doi.org/10.1016/j.lana.2023.100428
Demaerschalk, B. M., Coffey, J. D., Lunde, J. J., Speltz, B. L., Oyarzabal, B. A., & Copeland, B. J. (2023). Rationale for Establishing a Digital Health Research Center at Mayo Clinic. Mayo Clinic Proceedings: Digital Health, 1(3), 343–348. https://doi.org/10.1016/j.mcpdig.2023.06.001
Dingsoeyr, T., Falessi, D., & Power, K. (2019). Agile Development at Scale: The Next Frontier. In IEEE Software (Vol. 36, Issue 2, pp. 30–38). IEEE Computer Society. https://doi.org/10.1109/MS.2018.2884884
Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies: Towards explaining agile software development. In Journal of Systems and Software (Vol. 85, Issue 6). https://doi.org/10.1016/j.jss.2012.02.033
Estrada-Esponda, R. D., López-Benítez, M., Matturro, G., & Osorio-Gómez, J. C. (2024). Selection of software agile practices using Analytic hierarchy process. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2023.e22948
Hinault, T., D’Argembeau, A., Bowler, D. M., La Corte, V., Desaunay, P., Provasi, J., Platel, H., Tran The, J., Charretier, L., Giersch, A., & Droit-Volet, S. (2023). Time processing in neurological and psychiatric conditions. In Neuroscience and Biobehavioral Reviews (Vol. 154). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2023.105430
Kolabas, Z. I., Kuemmerle, L. B., Perneczky, R., Förstera, B., Ulukaya, S., Ali, M., Kapoor, S., Bartos, L. M., Büttner, M., Caliskan, O. S., Rong, Z., Mai, H., Höher, L., Jeridi, D., Molbay, M., Khalin, I., Deligiannis, I. K., Negwer, M., Roberts, K., … Erturk, A. (2023). Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell, 186(17), 3706-3725.e29. https://doi.org/10.1016/j.cell.2023.07.009
Lin, T., Xie, Q., Peng, T., Zhao, X., & Chen, D. (2023). The role of robotic surgery in neurological cases: A systematic review on brain and spine applications. In Heliyon (Vol. 9, Issue 12). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2023.e22523
Liston, E. J., Kalbfleisch, K. J., Stanley, K. J., Chaturvedi, R. R., Cohn, I., Farncombe, K. M., Hayeems, R. Z., Schwartz, M. L. B., Somerville, C. B., Kim, R. H., & Job-ling, R. K. (2022). A Model for the Integration of Genome Sequencing Into a Pediatric Cardiology Clinic. Canadian Journal of Cardiology, 38(9), 1454–1457. https://doi.org/10.1016/j.cjca.2022.04.015
Miller, M. I., Shih, L. C., & Kolachalama, V. B. (2023). Machine Learning in Clinical Trials: A Primer with Applications to Neurology. Neurotherapeutics, 20(4), 1066–1080. https://doi.org/10.1007/s13311-023-01384-2
Najihi, S., Elhadi, S., Abdelouahid, R. A., & Marzak, A. (2022). Software Testing from an Agile and Traditional view. Procedia Computer Science, 203, 775–782. https://doi.org/10.1016/j.procs.2022.07.116
Rindell, K., Ruohonen, J., Holvitie, J., Hyrynsalmi, S., & Leppänen, V. (2021). Securi-ty in agile software development: A practitioner survey. Information and Soft-ware Technology, 131. https://doi.org/10.1016/j.infsof.2020.106488
Rushton, R., Lorraine, O., Tiong, J., Karim, M., Dixon, R., Greenshields, W., Marotti, R., & Bretaña, N. A. (2023). Forecasting inventory for the state-wide pharma-ceutical service of South Australia. Procedia Computer Science, 219, 1257–1264. https://doi.org/10.1016/j.procs.2023.01.409
Serrador, P., & Pinto, J. K. (2015). Does Agile work? - A quantitative analysis of ag-ile project success. International Journal of Project Management, 33(5). https://doi.org/10.1016/j.ijproman.2015.01.006
Shen, T., Zhang, W., Wang, X., & Ren, X. (2024). Application of“Spinal cord fusion” in spinal cord injury repair and its neurological mechanism. In Heliyon (Vol. 10, Issue 8). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2024.e29422
Shrivastava, S. V., & Rathod, U. (2014). Risks in Distributed Agile Development: A Review. Procedia - Social and Behavioral Sciences, 133, 417–424. https://doi.org/10.1016/j.sbspro.2014.04.208
Vissers, L. E. L. M., Van Nimwegen, K. J. M., Schieving, J. H., Kamsteeg, E. J., Kleefstra, T., Yntema, H. G., Pfundt, R., Van Der Wilt, G. J., Krabbenborg, L., Brunner, H. G., Van Der Burg, S., Grutters, J., Veltman, J. A., & Willemsen, M. A. A. P. (2017). A clinical utility study of exome sequencing versus conven-tional genetic testing in pediatric neurology. Genetics in Medicine, 19(9), 1055–1063. https://doi.org/10.1038/gim.2017.1
Waddell, K. J., Patel, M. S., Wilkinson, J. R., Burke, R. E., Bravata, D. M., Koganti, S., Wood, S., & Morley, J. F. (2023). Deploying Digital Health Technologies for Remote Physical Activity Monitoring of Rural Populations With Chronic Neu-rologic Disease. Archives of Rehabilitation Research and Clinical Translation, 5(1). https://doi.org/10.1016/j.arrct.2022.100250
Waerzeggers, Y., Monfared, P., Viel, T., Winkeler, A., & Jacobs, A. H. (2010). Mouse models in neurological disorders: Applications of non-invasive imaging. In Biochimica et Biophysica Acta - Molecular Basis of Disease (Vol. 1802, Is-sue 10, pp. 819–839). https://doi.org/10.1016/j.bbadis.2010.04.009
Wu, Y., Liu, J., Kang, L., Tian, J., Zhang, X., Hu, J., Huang, Y., Liu, F., Wang, H., & Wu, Z. (2023). An overview of 3D printed metal implants in orthopedic applica-tions: Present and future perspectives. In Heliyon (Vol. 9, Issue 7). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2023.e17718