Study of Recommendations For The Best Candidates in a Decision Support System Using Fuzzy Multicriteria Based on Simple Additive Weighting
Keywords:
SAW, Fuzzy, FMCDM, Exchange, Labor.Abstract
Recommendations for prospective workers are determined based on the fulfillment of the criteria tested by participants, whereas fuzzy multicriteria based on Simple Additive Weighting are used to process available data to produce participant assessment information that has the potential to be accepted. The multi-criteria-based system shows the accuracy of candidate recommendations according to ranking. The fuzzy set will show the paradigm of handling uncertainty and ambiguity in the behavior of determining candidates effectively and choosing based on Fuzzy Multi-Criteria Decision Making (FMCDM) in the candidate labor market. The argument for selecting the title is adjusted to the Fuzzy Multicriteria decision-making pattern. Improving the quality of determining the workforce that is known by the public in order to train job seekers in both technical and managerial training so that reliable prospective workers are obtained who can compete in the world of work This method is aimed at reducing the large number of unemployed people who continue to grow, so placement of local workers is usually carried out either through the formal or non-formal sectors in order to create new prospective entrepreneurs or even look for opportunities between jobs.
Downloads
References
A. Suryahadi, “Tenaga Kerja dan Hubungan Industrial untuk Memperluas Kesempatan Kerja,” Lemb. Penelit. SMERU, vol. 3, p. 105, 2004.
T.Mustasya, Kebijakan Pasar Tenaga Kerja Fleksibe :Tepatkah Untuk Indonesia Saat Ini ?, vol. 1. 2018.
M. L. Iswaningsih, I. N. P. Budiartha, and N.M.P. Ujianti, Perlindungan Hukum Terhadap Tenaga Kerja Lokal dalam Undang-undang No 11 Tahun 2020 tentang Omnibus Law Cipta Kerja, vol. 2, no. 3. 2021.
N. Ismail and M. Zainuddin, Hukum Dan Fenomena Ketenagakerjaan, vol. 1, no. 3. 2019.
D. Heroe Soewono, Analisis Hukum Ketenagakerjaan di Indonesia, vol. 1, no. 2. 2007.
M.Modarres and S.Said-Nezhad, Fuzzy SAW Method by Preference Ratio, Vol 11 No.4, 2005
A.C.Tolga, FMCM for revaluation of ERP system choices using real options, vol.2. 2011.
Rajagukguk, D. M., & Limbong, R. Implementasi Metode Simple Additive Weighting (SAW) pada Sistem Pendukung Keputusan Pemilihan Dosen Berprestasi. Media Informasi Analisa dan Sistem, 2(2), 124-133.
S. Sutrisno, S. W. Hidayat, A. Bastari, and O. S. Suharyo, Application of Fuzzy Multiple Criteria Decision Making (MCDM) in Selection of Prospective Employees, vol. 10, no. 1. 2019.
F. Frieyadie, Penerapan Metode Simple Additive Weight (Saw) Dalam Sistem Pendukung Keputusan Promosi Kenaikan Jabatan, vol. 12, no. 1. 2016.
N. Manouselis, H. Drachsler, R. Vuorikari, H. Hummel, and R. Koper, Recommender Systems in Technology Enhanced Learning. 2011.
P. C.-I. J. of C. S. and and undefined 2009, A fuzzy multiple criteria decision making model in employee recruitment, vol. 9, no. 7. 2009.
C.Carlsson and R.Fullér, FMCDM : Recent developments, vol.78, no.2. 1996.
F. A. F. Ferreira, R. W. Spahr, S. P. Santos, and P. M. M. Rodrigues, A multiple criteria framework to evaluate bank branch potential attractiveness, vol. 16, no. 3. 2012.
A. Zuhdi, “Peran pemodelan sistem dalam pengambilan keputusan untuk aplikasi manufaktur dan energi,” Semin. Nas. III SDM Teknol. Nukl., vol. 1, no. November, pp. 21–22, 2007.
M. Ashraf and Z. Hussain, Multi-Criteria Decision Based Recommender System using Fuzzy Linguistics Model for E-Commerce, vol. 5, no. 4. 2018.
Rajagukguk, D. M., & Ritonga, I. S. (2020). Sistem Pendukung Keputusan Pemilihan Kepala Sekolah Berprestasi Menggunakan Metode SAW (Simple Additive Weighting). Jurnal Teknik Informatika UNIKA Santo Thomas, 202-210.
M.D. Ekstrand, J.T. Riedl, and J.A. Konstan, Collaborative filtering recommender systems, vol.4, No. 2. 2010.
M. Al-Ghamdi, H. Elazhary, and A. Mojahed, Evaluation of Collaborative Filtering for Recommender Systems, vol. 12, no. 3. 2021.
M. Modarres and S. Sadi-Nezhad, Fuzzy simple additive weighting method by preference ratio, vol. 11, no. 4. 2005.