Smart Mobile Application for Detecting Balinese Masks to Introduce Balinese Culture to World Tourism
Keywords:
Mask recognition, Balinese masks, Deep Learning, Cultural Tourism, VGG 16Abstract
Indonesia, known for its remarkable cultural diversity, encompasses many ethnic groups, each preserving its distinct cultural heritage. Among Indonesia's cultural treasures is the ancient art of traditional mask-making, referred to as "topeng." Bali, in particular, stands out as a hub for topeng artistry, with roots tracing back to prehistoric eras, serving as a profound representation of Bali's rich cultural values. Bali showcases a broad spectrum of traditional dances incorporating masks as props. The use of shows in these performances often piques the curiosity of residents and tourists, prompting questions about the symbolism and cultural context surrounding their use. People recognize the physical appearance of masks but need to gain knowledge of their names and deeper cultural meanings. The inherent similarities among mask forms further confound both locals and foreign visitors in distinguishing between various types of Balinese masks. This research endeavors to tackle this issue by developing an Artificial Intelligence (AI) system that is integrated into a mobile application using the CNN (VGG-16) method. The primary objective is to introduce and promote the captivating Balinese mask culture and artistry, bolstering cultural tourism through cutting-edge mobile technology. The anticipated outcomes include a nationally accredited journal publication, a user-friendly mobile application, and the acquisition of intellectual property rights. This research constitutes a transition from Technology Readiness Level (TRL) 2 to TRL 3, wherein the AI framework will be rigorously validated, incorporating accuracy, precision, recall, and F1-score assessments, all seamlessly integrated within the mobile system.
Downloads
References
Martono, “TOPENG DALAM PERKEMBANGAN BUDAYA,” Cakrawala Pendidikan Nomor 1, 1994.
A. Ma and S. Kirono, “Rancang Bangun Aplikasi E-Culture Topeng Cirebon Dengan Augmented Reality Berbasis Android,” Information Technology Journal (INTECH) of UMUS, vol. 1, no. 1, pp. 66–78, 2019.
A. Prakarsa Iskandar, A. Agung S, and A. Yuwono, “PERANCANGAN FOTOGRAFI FASHION TARI TOPENG BALI.”
I. W. Suartika E. P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101,” JURNAL TEKNIK ITS, vol. Vol. 5, No. 1, pp. 2301–9271, 2016.
M. Zufar, B. Setiyono, and J. Matematika, “Convolutional Neural Networks untuk Pengenalan Wajah Secara Real-Time,” 2016.
T. Nurhikmat, “IMPLEMENTASI DEEP LEARNING UNTUK IMAGE CLASSIFICATION MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) PADA CITRA WAYANG GOLEK,” 2018, doi: 10.13140/RG.2.2.10880.53768.
B. T. Nguyen, D. T. Dang-Nguyen, T. X. Dang, T. Phat, and C. Gurrin, “A Deep Learning based Food Recognition System for Lifelog Images,” in ICPRAM 2018 - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods, SciTePress, 2018, pp. 657–664. doi: 10.5220/0006749006570664.
E. Rasywir, R. Sinaga, Y. Pratama, U. Dinamika, and B. Jambi, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),” vol. 22, no. 2, 2020, doi: 10.31294/p.v21i2.
F. Nurona Cahya et al., “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN).” [Online]. Available: http://sistemasi.ftik.unisi.ac.id
R. Windiawan, A. Suharso, and S. Artikel, “Identifikasi Penyakit pada Daun Kopi Menggunakan Metode Deep Learning VGG16 INFO ARTIKEL ABSTRAK”, doi: 10.35891/explorit.
A. Maharil, “PERBANDINGAN ARSITEKTUR VGG16 DAN RESNET50 UNTUK REKOGNISI TULISAN TANGAN AKSARA LAMPUNG,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 236–243, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika
Rahma Shinta, “Klasifikasi Citra Penyakit Daun Cabai Rawit Dengan Menggunakan CNN Arsitektur AlexNet dan SqueezeNet,” 2023.
I. Akhmad DLY, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data,” Journal of Information System Research, vol. 4, no. 4, pp. 1176–1185, 2023, doi: 10.47065/josh.v4i4.3702.
K. A. Nugraha, “Pembentukan Dataset Token Sentimen Berdasarkan Akun Instagram Brand Elektronik Menggunakan K-Nearest Neighbors,” 2021.
M. Ghufroni An and A. Kurniawan, “Sistem Informasi Manajemen Berbasis Key Performance Indicator (KPI) dalam Mengukur Kinerja Guru,” 2022.
W. Musu and A. Ibrahim, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5.”
A. R. Utami, “Verifikasi Metode Pengujian Sulfat Dalam Air dan Air Limbah Sesuai SNI 6989.20 : 2009,” Jurnal Teknologi Proses dan Inovasi Industri, vol. 2, no. 1, 2017, doi: 10.36048/jtpii.v2i1.2726.
D. S. Hormansyah and Y. P. Utama, “Aplikasi Chatbot Berbasis Web Pada Sistem Informasi Layanan Publik Kesehatan Di Malang Dengan Menggunakan Metode Tf-Idf,” Jurnal Informatika Polinema, vol. 4, no. 3, p. 224, 2018, doi: 10.33795/jip.v4i3.211.
A. Kholik, “KLASIFIKASI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) PADA TANGKAPAN LAYAR HALAMAN INSTAGRAM,” JDMSI, vol. 2, no. 2, pp. 10–20, 2021.
W. Buana and B. Nurina Sari, “Analisis User Interface Meningkatkan Pengalaman Pengguna Menggunakan Usability Testing pada Aplikasi Android Course,” vol. 5, no. 2, pp. 91–97, 2022, [Online]. Available: http://e-journal.unipma.ac.id/index.php/doubleclick.