Predicted demand for 3 kg LPG gas in each provinces area in Indonesia

Authors

  • Rachmawati Novaria Universitas 17 Agustus 1945 Surabaya
  • Agry Alfiah Universitas Gunadarma
  • Muammar Khaddafi Universitas Malikussaleh
  • Tukino Tukino Universitas Buana Perjuangan Karawang
  • I Gede Iwan Sudipa Institut Bisnis dan Teknologi Indonesia

Keywords:

Trend and Pattern Analysis, Demand Prediction, Exponential Triple Smothing

Abstract

Predicted  the demand for 3 kilograms of LPG gas in different provinces of Indonesia is crucial for assuring the provision of energy to households. By employing the Exponential Triple Smoothing (ETS) technique, this study examines demand-influencing factors and consumption patterns. By integrating historical data's levels, trends, and seasonality, ETS enables accurate and timely forecasts. The findings illustrate the predicted outcomes for the ten provinces in Indonesia that have the highest demand for 3 kilograms of LPG gas, as well as the ten provinces that have the lowest demand across all regions. All provinces' MAPE forecasting error testing results utilizing the ETS method are incorporated with an exceptionally high degree of precision, given that the error rate is 5.27%.

Downloads

Download data is not yet available.

References

R. Sianipar, “Optimalisasi Ketahanan Energi Melalui Kebijakan Pengurangan Konsumsi Gas Elpiji di Indonesia,” JDKP J. Desentralisasi dan Kebijak. Publik, vol. 4, no. 1, pp. 62–72, 2023.

K. Thoday, P. Benjamin, M. Gan, and E. Puzzolo, “The Mega Conversion Program from kerosene to LPG in Indonesia: Lessons learned and recommendations for future clean cooking energy expansion,” Energy Sustain. Dev., vol. 46, pp. 71–81, 2018.

W. Wahyuddin, M. Marzuki, M. Khaddafi, R. N. Ilham, and I. Sinta, “A Study of Micro, Small and Medium Enterprises (MSMEs) during Covid-19 Pandemic: An Evidence using Economic Value-Added Method,” J. Madani Soc., vol. 1, no. 1, pp. 1–7, 2022.

I. G. I. Sudipa, R. Riana, I. N. T. A. Putra, C. P. Yanti, and M. D. W. Aristana, “Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method,” Sink. J. dan Penelit. Tek. Inform., vol. 8, no. 3, pp. 1883–1893, 2023.

I. G. I. Sudipa, I. B. G. Sarasvananda, H. Prayitno, I. N. T. A. Putra, R. Darmawan, and D. A. WP, Teknik Visualisasi Data. PT. Sonpedia Publishing Indonesia, 2023.

A. Arifin, I. Djumat, D. G. Nicolas, A. S. M. Syam, and N. Saputra, “Metaverse in Education; Innovation Strategy, Learning Acceleration, and Optimization,” J. Namibian Stud. Hist. Polit. Cult., vol. 34, pp. 1470–1485, 2023.

R. Dewantara and J. Giovanni, “Analisis Peramalan Item Penjualan dalam Optimalisasi Stok Menggunakan Metode Least Square,” J. Krisnadana, vol. 3, no. 1, pp. 59–66, 2023.

D. F. Hakam, H. Nugraha, A. Wicaksono, R. A. Rahadi, and S. P. Kanugrahan, “Mega conversion from LPG to induction stove to achieve Indonesia’s clean energy transition,” Energy Strateg. Rev., vol. 41, p. 100856, 2022.

A. Prahendratno et al., BUSINESS INTELEGENT: Pengantar Business Intelligence dalam Bisnis. PT. Sonpedia Publishing Indonesia, 2023.

J. N. A. Aziza, “Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. I, pp. 35–41, 2022.

T. Saputra, S. Zuhdi, F. Kusumawardhani, and R. Novaria, “The Effect of Economic Development on Illegal Gold Mining in Kuantan Singingi, Indonesia,” J. Gov., vol. 8, no. 1, pp. 31–42, 2023.

M. Heikal, R. N. Ilham, and M. Khaddafi, “Accelerate Economic Growth of Lhokseumawe City with Application of Supply Chain and Main Strategic Commodity Model Based on Sharia During the Covid-19 Pandemic.,” Qual. to Success, vol. 23, no. 191, 2022.

A. Pujianto, A. Mulyati, and R. Novaria, “Pemanfaatan Big Data Dan Perlindungan Privasi Konsumen Di Era Ekonomi Digital,” Maj. Ilm. BIJAK, vol. 15, no. 2, pp. 127–137, 2018.

M. N. R. Fitriani, B. Priyatna, B. Huda, A. L. Hananto, and T. Tukino, “Implementasi Metode K-Means Untuk Memprediksi Status Kredit Macet,” J. Sist. Komput. dan Inform., vol. 4, no. 3, pp. 554–561, 2023.

T. Widyanti, S. S. Hilabi, A. Hananto, and E. Novalia, “Implementasi K-Means dan K-Nearest Neighbors pada Kategori Siswa Berprestasi,” J. Inf. dan Teknol., pp. 75–82, 2023.

I. M. D. Susila, Y. P. Atmojo, N. L. P. Srinadi, I. B. Suradarma, L. Yuningsih, and E. S. Rini, “Performance Analysis of the Triple Exponential Smoothing Method During the Covid19 Pandemic on Tourist Visit Data,” in 2022 1st International Conference on Information System & Information Technology (ICISIT), 2022, pp. 358–363.

R. Sesario, T. Duha, A. Alfiah, S. A. Pramono, and P. A. Cakranegara, “SINGLE EXPONENTIAL SMOOTHING IN FORECASTING TOOLS AND MEDICINE STOCKS,” INFOKUM, vol. 10, no. 4, pp. 27–32, 2022.

I. H. Kusnadi, T. B. Sembiring, M. Khaddafi, W. Nurhayati, and S. Sahrul, “Demographic trends in average wages of workers in indonesian provinces,” J. Mantik, vol. 7, no. 2, pp. 1264–1272, 2023.

A. Arifin, E. Prajayanti, M. Hasby, M. Taufik, and D. T. Anggarini, “The Unex Application as An English Interactive Learning Media: A Feasibility Study,” J. Kependidikan J. Has. Penelit. dan Kaji. Kepustakaan di Bid. Pendidikan, Pengajaran dan Pembelajaran, vol. 9, no. 2, 2023.

I. K. D. A. Saputra, I. P. Satwika, and N. W. Utami, “Analisis Transaksi Penjualan Barang Menggunakan Metode Apriori pada UD. Ayu Tirta Manis,” J. Krisnadana, vol. 1, no. 2, pp. 11–20, 2022.

I. M. D. P. Asana, I. M. D. Kurniadi, S. A. Dwipayani, and K. J. Atmaja, “Sales Forecasting Applications For Retail Companies Using Double Exponential Smoothing And Golden Section Methods,” J. Mantik, vol. 6, no. 2, pp. 1603–1611, 2022.

I. K. A. G. Wiguna, N. L. P. A. C. Utami, W. G. S. Parwita, I. P. A. E. D. Udayana, and I. G. I. Sudipa, “Rainfall Forecasting Using the Holt-Winters Exponential Smoothing Method,” J. Info Sains Inform. dan Sains, vol. 13, no. 01, pp. 15–23, 2023.

D. S. M. Simanjuntak, I. Gunawan, S. Sumarno, P. Poningsih, and I. P. Sari, “Penerapan Algoritma K-Medoids Untuk Pengelompokkan Pengangguran Umur 25 tahun Keatas Di Sumatera Utara,” J. Krisnadana, vol. 2, no. 2, pp. 289–309, 2023.

K. D. Hartomo, S. Yulianto, and A. Valentina, “A New Model of Poverty Index Prediction Using Triple Exponential Smoothing Method,” in 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 2020, pp. 76–79.

I. G. I. Sudipa et al., METODE PENELITIAN BIDANG ILMU INFORMATIKA (Teori & Referensi Berbasis Studi Kasus). PT. Sonpedia Publishing Indonesia, 2023.

S. T. Muhammad Wali et al., Penerapan & Implementasi Big Data di Berbagai Sektor (Pembangunan Berkelanjutan Era Industri 4.0 dan Society 5.0). PT. Sonpedia Publishing Indonesia, 2023.

B. H. Hayadi, I. G. I. Sudipa, and A. P. Windarto, “Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation,” MATRIK J. Manajemen, Tek. Inform. Dan Rekayasa Komput., vol. 21, no. 1, pp. 11–20, 2021.

Downloads

Published

2024-01-13

How to Cite

Novaria, R., Alfiah, A., Khaddafi, M., Tukino, T., & Sudipa, I. G. I. (2024). Predicted demand for 3 kg LPG gas in each provinces area in Indonesia. Jurnal Info Sains : Informatika Dan Sains, 14(01), 125–136. Retrieved from https://ejournal.seaninstitute.or.id/index.php/InfoSains/article/view/3765