Random Forest Analysis In Classifying Orange Quality Data

Authors

  • Suci Ramadhani Politeknik Pertanian Negeri Samarinda
  • Muslimin B Politeknik Pertanian Negeri Samarinda
  • Ida Maratul Khamidah Politeknik Pertanian Negeri Samarinda

DOI:

https://doi.org/10.54209/infosains.v14i02.4420

Keywords:

Agriculture, Classification, Orange Quality, Random Forest

Abstract

The quality of oranges is important to determine selling value. However, citrus quality assessments are often subjective and inconsistent, which can impact consumer satisfaction and market efficiency. In the agricultural industry, especially in citrus commodities, there are difficulties in classifying fruit quality accurately and efficiently, which has an impact on the assessment and determination of market prices. Given the importance of citrus quality in the agricultural and food industries, there is an urgent need for objective and efficient methods for classifying citrus quality. Inappropriate classification can cause economic losses for farmers and distributors, as well as reduce consumer satisfaction with product quality. As a solution, this research proposes the use of the Random Forest method to classify orange quality data. The method used in this research involved collecting orange quality data, including characteristics such as color, texture, and size. This data is then analyzed using the Random Forest algorithm. The Random Forest method is used to process orange quality data, by utilizing features such as color, size and skin texture. This model is trained using historical data to predict fruit quality. The research results show that the Random Forest method successfully classifies citrus quality data with high accuracy, demonstrating its potential as an effective tool for future citrus quality assessment by proving its effectiveness in supporting decisions in the agricultural sector.

Downloads

Download data is not yet available.

References

A. Primajaya et al. (2018). Random Forest Algorithm for Prediction of Precipitation,” IJAIDM (Indonesian J. Artif. Intell. Data Mining), vol. 1, no. 1, pp. 27–31.

Amiri, M., Pourghasemi, H. R., Ghanbarian, G. A., & Afzali, S. F. (2019). Assessment of the Importance of Gully Erosion Effective Factors using Boruta Algorithm and Its Spatial Modeling and Mapping using Three Machine Learning Algorithms. Elsevier, 340, 55– 69. https://doi.org/10.1016/j.geoderma.2018.12.042

Arinta, R. R., & Emanuel, A. W. R. (2019). Natural Disaster Application on Big Data and Machine Learning: A Review.

Dou, J., Yunus, A. P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Khosravi, K., Yang, Y., & Pham, B. T. (2019). Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in The Izu-Oshima Volcanic Island, Japan. Elsevier, 662, 332–346. https://doi.org/10.1016/j.scitotenv.2019.01.221

Firmansyah, Guntur & Hermawan, Arief. (2023). Implementasi Algortima Naive Bayes Untuk Klasifikasi Kesegaran Buah Jeruk. Jurnal Informatika. 10. 180-184. 10.31294/inf.v10i2.16115.

Fitri, V.A., Andreswari, R., and Hasibuan, M.A. (2019). Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm. Procedia Computer Science, 161: 765-772.

Iksan, N., Widodo, D.A., Sunarko, B., Udayanti, E.D. and Kartikadharma, E. (2021). Sentiment analysis of public reaction to COVID19 in twitter media using naïve Bayes classifier. In 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce) (pp. 1-4). IEEE.

Kalumbang, Sri Wahyuni., Subanar. (2021). Comparison The Logistic Regression, Naive Bayes Classification, And Random Forest. Jurnal Matematika Thales (JMT): 2021 Vol. 03 No. 02

Khanvilkar, G., and Vora, D. (2019). Product Recommendation using 96 Sentiment Analysis of Reviews: A Random Forest Approach. International Journal of Engineering and Advanced Technology (IJEAT), 8: 2249-8958.

Khosravi, K., Pham, B. T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., & Tien Bui, D. (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Elsevier, 627, 744–755. https://doi.org/10.1016/j.scitotenv.2018.01.266

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L. and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

M. A. Ghani and A. Subekti. (2018). Email Spam Filtering Dengan Algoritma Random Forest,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 3, no. 2, pp. 216–221.

Mustaqim, M., Warsito, B dan Surarso, B. (2019). Kombinasi Synthetic Minority Oversampling Technique ( SMOTE ) Dan Neural Network Backpropagation Untuk Menangani Data Tidak Seimbang Pada Prediksi Pemakaian Alat Kontrasepsi Implan, Jurnal Ilmiah Teknologi Sistem Informasi 5 (34), 116– 127.

Pandey, V. K., Sharma, K. K., Pourghasemi, H. R., & Bandooni, S. K. (2019). Sedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh), India. Elsevier, 182, 104150. https://doi.org/10.1016/j.catena.2019.104150

Pangasturi, S.S. (2018). Perbandingan Metode Ensemble Random Forst Dengan Smote-Boosting Dan Smote-Bagging Pada Klasifikasi Data Mining Untuk Kelas Imbalance, Tesis., Surabaya

Parmar, A., Kataruya, R dan Petal, V. (2019). A Review on Random Forest: An Ensemble Classifier, Lecture Notes on Data Engineering and Communications Technologies 26, 758–763.

Tanyu, B.F., Abbaspour, A., Alimohammadlou, Y & Tecuci, G. (2021). Landslide susceptibility analyses using Random Forest, C4.5, and C5.0 with balanced and unbalanced datasets, Elsevier., USA

Ustyannie, W & Suprapto. (2020). Oversampling Method To Handling Imbalanced Datasets Problem In Binary Logistic Regression Algorithm, IJCCS., Yogyakarta

Utari, M., Warsito, B., Kusumaningrum, R. (2020). Implementation of Data Mining for Drop-Out Prediction Using Random Forest Method. In 2020 8th International Conference on Information and Communication Technology (ICoICT), IEEE, 1–5.

X. Gao and J. Wen. (2019). An Improved Random Forest Algorithm for Predicting Employee Turnover,” Semant. Sch., vol. 2019.

Downloads

Published

2024-06-03

How to Cite

Suci Ramadhani, Muslimin B, & Ida Maratul Khamidah. (2024). Random Forest Analysis In Classifying Orange Quality Data. Jurnal Info Sains : Informatika Dan Sains, 14(02), 178–186. https://doi.org/10.54209/infosains.v14i02.4420