The Analysis Of Honeypot Performance Using Grafana Loki And ELK Stack Visualization

Authors

  • Yahya Alexander Djo Njoera Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
  • I Nyoman Buda Hartawan Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
  • Anak Agung Gede Bagus Ariana Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
  • Evi Dwi Krisna Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia

Keywords:

Honeypot, Grafana Loki, ELK Stack, Data Visualization

Abstract

Through the development of current technology, many agencies have implemented technology in the form of computers and servers to improve company operations. However, there are several aspects of threats in the form of cyber attacks that lurk someone when using a computer connected to the internet. One way to prevent these attacks is to use a honeypot application. Honeypot is a system used to deceive hackers who carry out cyber attacks on the system. Every attack received by the honeypot will be recorded in a log. However, reading log data from the honeypot is still difficult to do directly. So an application is needed that can visualize log data from the honeypot. In this study, the visualization applications used are Grafana Loki and ELK Stack. The purpose of this study was to determine the performance of Grafana Loki and ELK Stack in using system resources and in visualizing data. The results of this study indicate that Grafana Loki when processing or not processing honeypot log data uses less system resources compared to ELK Stack. ELK Stack uses 37.8% or 2930 MB of memory, while Grafana Loki only uses 9.7% or 769 MB. Although ELK Stack requires more CPU and memory resources, its data visualization is easier to do compared to Grafana Loki.

Downloads

Download data is not yet available.

References

Annovazzi, D. (2022). How Google Cloud can help stop credential stuffing attacks. Google Cloud. https://cloud.google.com/blog/products/identity-security/how-google-cloud-can-help-stop-credential-stuffing-attacks

Cemazar, S. A. (2022). 10 biggest advantages of open-source software. https://www.rocket.chat/blog/open-source-software-advantages

Eka, R., Rachman, A., & Wahyu, T. (2010). Virtual Private Server ( VPS ) Sebagai Alternatif Pengganti Dedicated Server. Seminar on Intelligent Technology and Its Applications, SITIA, 2–7.

Gunawan, A. R., Sastra, N. P., & Wiharta, D. M. (2021). Penerapan Keamanan Jaringan Menggunakan Sistem Snort dan Honeypot Sebagai Pendeteksi dan Pencegah Malware. Majalah Ilmiah Teknologi Elektro, 20(1), 81. https://doi.org/10.24843/mite.2021.v20i01.p09

Kaspersky. (2022). Hacktivists step back giving way to professionals: a look at DDoS in Q3 2022. Kaspersky. https://www.kaspersky.com/about/press-releases/2022_hacktivists-step-back-giving-way-to-professionals-a-look-at-ddos-in-q3-2022

Nurrahman, A. F. (2019). Low-Interaction Honeypot Dengan Dionaea Untuk Mendukung Keamanan Jaringan. Journal of Informatics and Technology, 2(4), 28–37.

Rachman, P., Yugitama, R., & Sulistyo. (2019). Efisiensi Monitoring Honeypot Dengan Menggunakan Visualisasi Dan Otomatisasi Laporan Log Serangan. Jurnal IT, 10(3), 245–252.

Sulaksono, W. A., & Suharyanto, C. E. (2020). Implementasi Honeypot Sebagai Sistem Keamanan Jaringan Pada Virtual Private Server. InfoTekJar : Jurnal Nasional Informatika Dan Teknologi Jaringan, 5(1), 90–95.

Syaifuddin, Ahadin, W. B., & Sari, Z. (2022). Visualisasi Data Attacker Activity Log Portable Modern Honey Network. Jurnal Repositor, 4(1), 95–102. https://doi.org/10.22219/repositor.v4i1.1446

Tati Ernawati, & Fikri Faiz Fadhlur Rachmat. (2021). Keamanan Jaringan dengan Cowrie Honeypot dan Snort Inline-Mode sebagai Intrusion Prevention System. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 180–186. https://doi.org/10.29207/resti.v5i1.2825

Tilwani, R. (2023). Grafana vs Kibana - Which One to Choose & Why? https://humalect.com/blog/kibana-vs-grafana-differences

Wastumirad, A. W., & Darmawan, M. I. (2021). Implementasi Honeypot Menggunakan Dionaea Dan Kippo Sebagai Penunjang Keamanan Jaringan Komunikasi Komputer. Jurnal Teknologi, 9(1), 80–91. https://doi.org/10.31479/jtek.v9i1.119

Wibawa, G. H. P., Sasmita, I. G. M. A., & Raharja, I. M. S. (2020). Analisis Data Log Honeypot Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 8(1), 13. https://doi.org/10.24843/jim.2020.v08.i01.p02

Widodo, A. (2015). Implementasi Monitoring Jaringan Komputer Menggunakan Dude. Jurnal Teknologi Informasi, 11(1), 1–10. https://journal.ubm.ac.id/index.php/teknologi-informasi/article/view/255

Willy Andrian, & Dedy Prasetya Kristiadi. (2022). Pengembangan Manajemen Keamanan Informasi Database Dan Aplikasi Dengan Optimasi Keamanan Website. Jurnal Sistem Informasi Dan Teknologi (SINTEK), 2(2), 63–68. https://doi.org/10.56995/sintek.v2i2.48

Downloads

Published

2024-08-08

How to Cite

Njoera, Y. A. D., Hartawan, I. N. B., Ariana, A. A. G. B., & Krisna, E. D. (2024). The Analysis Of Honeypot Performance Using Grafana Loki And ELK Stack Visualization. Jurnal Info Sains : Informatika Dan Sains, 14(03), 297–309. Retrieved from https://ejournal.seaninstitute.or.id/index.php/InfoSains/article/view/5129