Integration Of CRISP-DM And Machine Learning In Residential Sales Decision Making In The Middle And Upper Middle Class At Pt XYZ
Keywords:
Random Forest CRISP-DM Gender Age Group Martial Status Occupation Monthly Expenditure Monthly IncomeAbstract
This study was conducted to predict the effect of monthly income on 6 other demographic variables. Research data was obtained through internal questionnaire data of PT XYZ involving 393 respondents of middle residential class and 47 respondents of upper middle residential class. Data collection done with a field questionnaire containing 6 demographic questions. The data was analyzed using the CRISP-DM integration method and the Random Forest analysis method. The results of this study state that middle-class residential targets with variables such as Monthly Expenditure and Age Group have a significant influence on Monthly Income and upper-middle-class residential targets with variables such as Age Group, Employment Status and Occupation have a significant influence on Monthly Income.
Downloads
References
Adetunji, A. B., Akande, O. N., Ajala, F. A., Oyewo, O., Akande, Y. F., & Oluwadara, G. (2021). House Price Prediction using Random Forest Machine Learning Technique. Procedia Computer Science, 199, 806–813. https://doi.org/10.1016/j.procs.2022.01.100
Aggarwal, C. C. (2020). Data Mining: The Textbook. Springer. Aggarwal, C. C. (2020). Machine Learning for Text. Springer.
Autor, D., & Dorn, D. (2021). The Changing Structure of Work and Its Impact on Income Inequality. Economic Studies Quarterly, 92(2), 147-172.
Autor, D., & Salomons, A. (2019). New Frontiers: The Evolving Impact of Automation on Jobs and Wages. Journal of Economic Perspectives, 33(2), 3-30.
BBC News Indonesia. (2024). Nasib jadi kelas menengah di Indonesia – Banting tulang, makan tabungan, dan dilupakan - BBC News Indonesia. BBC News Indonesia. https://www.bbc.com/indonesia/articles/cy4l3z2e8xro
Blau, F. D., & Kahn, L. M. (2020). The Gender Wage Gap: Extent, Trends, and Explanations. Journal of Economic Literature, 58(3), 789-865.
Blundell, R., Pistaferri, L., & Preston, I. (2019). Consumption Inequality and Income Dynamics. American Economic Review, 109(9), 3027-3072.
Blustein, D. L., Kenny, M. E., Di Fabio, A., & Guichard, J. (2019). Expanding the Impact of the Psychology of Working: Engaging Psychology in the Struggle for Decent Work and Human Rights. Journal of Career Assessment, 27(1), 3-28.
BM Lukita Grahadyarini. (2019). Transformasi Bisnis Lippo Karawaci - Kompas. https://www.kompas.id/baca/utama/2019/03/13/transformasi-bisnis-lippo- karawaci
Browning, M., & Crossley, T. F. (2021). Household Spending and Consumption: A Behavioral Perspective. Journal of Economic Behavior & Organization, 185, 523-540.
CariProperti. (2023). Cari Properti Terbaru dan Terlengkap di Karawaci [Info + Harga]. https://cariproperti.com/tangerang/karawaci
Clarke, N., & Mahadi, N. (2020). Mutual Recognition Respect Between Leaders and Followers: Its Relationship to Employee Outcomes. Journal of Business Ethics, 164(3), 485-503.
CNN Indonesia. (2024). Mengintip Peran Kelas Menengah ke Ekonomi RI, Besarkah_. https://www.cnnindonesia.com/ekonomi/20240808164953- 532-1130857/mengintip-peran-kelas-menengah-ke-ekonomi-ri-besarkah
Deaton, A., & Muellbauer, J. (2020). Consumption and Income Patterns in a Changing Economy. Economic Perspectives Journal, 38(4), 345-368.
DQ Lab. (2023). Manfaat Machine Learning Dalam Real Estate dan Properti. Https://Dqlab.Id/Manfaat-Machine-Learning-Dalam-Real-Estate-and-
Properti. https://dqlab.id/manfaat-machine-learning-dalam-real-estate-and- properti
Dynan, K. E., Skinner, J., & Zeldes, S. P. (2020). Do the Rich Save More? A Reassessment of Savings Patterns Across Income Levels. Journal of Economic Perspectives, 34(3), 185-204.
Eickmeyer, K. J., & Manning, W. D. (2021). Marriage, Cohabitation, and Financial Decision-Making. Journal of Family and Economic Issues, 42(1), 34-49.
ekon.go.id. (2024). Hadirkan Para Menko Periode Sebelumnya, Menko Airlangga_ Kita Dorong Bersama Potensi Kelas Menengah - Kementerian Koordinator Bidang Perekonomian Republik Indonesia. https://www.ekon.go.id/publikasi/detail/5942/hadirkan-para-menko- periode-sebelumnya-menko-airlangga-kita-dorong-bersama-potensi-kelas- menengah
Frech, A., & Williams, K. (2019). Marital Status and Well-Being: A Comprehensive Review. Journal of Marriage and Family, 81(3), 825-843.
Gallie, D., Felstead, A., & Green, F. (2021). The Quality of Work and Wellbeing: A Longitudinal Analysis. Journal of Happiness Studies, 22(5), 2277-2299.
Galuh Mafela Mutiara Sujak. (2023). Bisakah Menggunakan Machine learning Untuk Menentukan Harga Properti? In Kementrian Keuangan Republik Indonesia (pp. 1–1). https://www.djkn.kemenkeu.go.id/kpknl-surabaya/baca-artikel/16335/Bisakah-Menggunakan-Machine-Learning- Untuk-Menentukan-Harga-Properti.html
Google Inc. (2017). Machine Learning -- Explore -- Google Trends. https://trends.google.com/trends/explore?q=Machine%5C Learning
Han, J., Pei, J., & Kamber, M. (2019). Data Mining: Concepts and Techniques. Elsevier.
Harjadi, C. N. (2024). Pasar Global Kecerdasan Buatan Diperkirakan Melesat pada 2024 - GoodStats. https://Goodstats.id/article/pasar-global- kecerdasan-buatan-diperkirakan-melesat-pada-2024-1pFZM
Hastie, T., Tibshirani, R., & Friedman, J. (2021). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
Hurd, M. D., & Rohwedder, S. (2018). Spending and Well-Being in Retirement. Journal of Public Economics, 168, 109-121.
Indopremier. (2024). Sektor Properti Bertumbuh, Lippo Karawaci (LPKR) Pacu Penjualan Proyek Andalan. https://www.indopremier.com/ipotnews/newsDetail.php?jdl=Sektor_Properti_Bertumbuh Lippo_Karawaci_(LPKR)_Pacu_Penjualan_Proyek_Andalan&news_id=454971&group_news=RESEARCHNEWS&news_date=&taging_subtype=LPKR&name=&search=y_general&q=LippoKarawaci&halaman=1
Infobanknews. (2024). Ini Bukti Nyata Pentingnya Peran Kelas Menengah untuk Ekonomi Indonesia _ Infobanknews. https://infobanknews.com/ini-bukti- nyata-pentingnya-peran-kelas-menengah-untuk-ekonomi-indonesia/
Jaggia, S., Kelly, A., Lertwachara, K., & Chen, L. (2020). Applying the CRISP- DM Framework for Teaching Business Analytics. Decision Sciences Journal of Innovative Education, 18(4), 612–634. https://doi.org/10.1111/dsji.12222
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning with Applications in R. Springer.
Jappelli, T., & Pistaferri, L. (2020). The Economics of Consumption: Theory and Evidence. Oxford University Press.
Kahneman, D., & Deaton, A. (2020). High Income Improves Evaluation of Life but Not Emotional Well-Being Beyond a Threshold. Proceedings of the National Academy of Sciences, 117(4), 2200-2205.
Kotu, V., & Deshpande, B. (2019). Data Science: Concepts and Practice. Morgan Kaufmann.
Krueger, D., & Perri, F. (2019). Macroeconomic Shocks and Household Spending Behavior. Journal of Economic Dynamics and Control, 104, 1-20.
Kuhn, M., & Johnson, K. (2019). Feature Engineering and Selection: A Practical Approach for Predictive Models. CRC Press.
Kumar, R., Singh, P., & Sharma, A. (2021). Real Estate Price Prediction Using Random Forest Model. Journal of Machine learning Applications, 12(4), 215-229.
Lee, R., & Mason, A. (2018). Population Aging and the Generational Economy: A Global Perspective. Journal of Economic Perspectives, 32(3), 129-152.
Liputan6. (2024). Banyak Orang Ingin Beli Rumah di Tangerang, LPKR Tawarkan Proyek Lippo Village hingga Park Serpong - Bisnis Liputan6. https://www.liputan6.com/bisnis/read/5660883/banyak-orang-ingin-beli- rumah-di-tangerang-lpkr-tawarkan-proyek-lippo-village-hingga-park- serpong?page=2
Liu, H., Waite, L. J., & Shen, S. (2022). Marital Status, Social Support, and Mental Health: A Longitudinal Study. International Journal of Public Health, 67, 56-68.
Lusardi, A., & Mitchell, O. S. (2020). Financial Literacy and Planning Across the Age Spectrum. Journal of Financial Economics, 144(2), 300-325.
Marban, O., Mariscal, G., & Segovia, J. (2018). A Data Mining & Knowledge Discovery Process Model. Journal of Intelligent Information Systems, 40(2), 223–240.
Muhammad Rizki Vauzi. (2022). Lippo Karawaci (LPKR) Kejar Target Pra Penjualan, Intip Strateginya Yuk! https://www.emitennews.com/news/lippo-karawaci-lpkr-kejar-target-pra- penjualan-intip-strateginya-yuk
Muhammad, F. I. (2024). Analisis Penentuan Solusi Desain Properti Berdasarkan Pendapatan Generasi Milenial Di Yogyakarta Menggunakan N-Vivo. STORAGE: Jurnal Ilmiah Teknik Dan Ilmu …, 3(3), 145–155.https://journal.literasisains.id/index.php/storage/article/view/3920%0Ahttp s://journal.literasisains.id/index.php/storage/article/download/3920/1716
Nelson, M. R., Brunel, F. F., & Supphellen, M. (2019). Gender Differences in Consumer Behavior: Exploring Sustainable Preferences. Journal of Consumer Research, 45(6), 1152-1175.
Nelson, R. E., & Thompson, B. M. (2019). Age and Social Dynamics: Implications for Research and Policy. Population Studies Journal, 73(2), 245-268.
News, A. (2024). Menjaga kelas menengah untuk ekonomi yang stabil - ANTARA News. https://www.antaranews.com/berita/4301775/menjaga-kelas- menengah-untuk-ekonomi-yang-stabil
Perelli-Harris, B., & Styrc, M. (2019). Marriage and Mental Health: Trends Across Demographic Groups. Demographic Research, 40(8), 231-258.
Perez, C. C. (2020). Invisible Women: Exposing Data Bias in a World Designed for Men. Chatto & Windus.
Property Lounge. (2024). Bagaimana Menggunakan Analytics untuk Mengidentifikasi Tren Pasar Properti_ Panduan Lengkap - Property Lounge. https://www.propertylounge.id/bagaimana-menggunakan- analytics-untuk-mengidentifikasi-tren-pasar-properti-panduan-lengkap/
Provost, F., & Fawcett, T. (2020). Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. O'Reilly Media.
Saez, E., & Zucman, G. (2019). The Triumph of Injustice: How the Rich Dodge Taxes and How to Make Them Pay. W.W. Norton & Company.
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181(2019), 526–534. https://doi.org/10.1016/j.procs.2021.01.199
Singh, A., Gupta, R., & Verma, K. (2021). Age-Related Health Risks and Public Health Interventions. International Journal of Health Policy and Management, 10(4), 567-576.
Smith, J. W., & Clurman, A. (2019). Generational Behaviors and Consumer Trends: Understanding Millennials and Beyond. Journal of Consumer Studies, 45(5), 1234-1256.
Smith, J., & Wang, L. (2021). Gender Differences in Health Risks: A Comparative Analysis. International Journal of Public Health, 66, 45-59.
Smith, T., Johnson, P., & Taylor, L. (2019). Market Segmentation Analysis Using Random Forest. Marketing Science Journal, 18(3), 145-160.
Sun, X., Zhao, L., & Chen, W. (2022). Big Data Analysis Using Random Forest Algorithm: Challenges and Opportunities. Journal of Data Science, 20(1), 67-84.
Tripathi, S., Muhr, D., Brunner, M., Jodlbauer, H., Dehmer, M., & Emmert-Streib,
F. (2021). Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing. Frontiers in Artificial Intelligence, 4(June), 1–20. https://doi.org/10.3389/frai.2021.576892
Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A Churn Prediction Model Using Random Forest: Analysis of Machine Learning Techniques for Churn Prediction and Factor Identification in Telecom Sector. IEEE Access, 7(c), 60134–60149. https://doi.org/10.1109/ACCESS.2019.2914999
Universitas Airlangga. (2024). Kelas Menengah Menurun, Ancam Pertumbuhan Ekonomi Indonesia_ - Universitas Airlangga Official Website. Universitas Airlangga. https://unair.ac.id/kelas-menengah-menurun-ancam- pertumbuhan-ekonomi-indonesia/
Valecha, H., Varma, A., Khare, I., Sachdeva, A., & Goyal, M. (2018). Prediction of Consumer Behaviour using Random Forest Algorithm. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, UPCON 2018. https://doi.org/10.1109/UPCON.2018.8597070
Wang, J., Li, Q., & Zhang, Y. (2020). Application of Random Forest in Healthcare Prediction. International Journal of Health Informatics, 9(2), 98-112.
Warr, P., & Nielsen, K. (2018). Well-Being and Work Performance: The Role of Job Stress and Engagement. Journal of Managerial Psychology, 33(2), 123- 139.
Wiemer, H., Drowatzky, L., & Ihlenfeldt, S. (2019). Data mining methodology for engineering applications (DMME)-A holistic extension to the CRISP-DM model. Applied Sciences (Switzerland), 9(12), 403–408. https://doi.org/10.3390/app9122407
Wirth, R., & Hipp, J. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining.
Wood, W., & Eagly, A. H. (2018). Gender and Social Role Theory: A Developmental Perspective. Journal of Personality and Social Psychology, 115(5), 889-902.
Zhang, Z., Wang, S., & Sun, J. (2020). Random Forests: Principles and Applications in Data Science. Journal of Big Data, 7(1), 1-12.
Zissimopoulos, J., & Karney, B. (2020). Economic Outcomes of Marital Transitions. Journal of Economic Behavior & Organization, 177, 524-537.