K-Means Clustering Algorithm Analysis For Grouping Patient Medical Record Data Based On Disease Type
Keywords:
Data Mining, Medical Records, K-Means Clustering Algorithm, Python-based Jupyter NotebookAbstract
Dr. Tengku Mansyur Regional Hospital, Tanjungbalai City, still has difficulty in grouping the intensity of diseases that often occur in Tanjungbalai City, in the exact grouping based on the results of patient medical data records. Medical records are documents that record information about the patient's condition, medical history, and previous treatment filled in by health workers who provide care and treatment. Medical records function to provide health information for all health workers involved in patient care. The goal is to minimize the increase in the intensity of the disease experienced by patients by providing counseling and solutions to diseases that have high intensity. administration in an effort to improve health services in hospitals and also increase the supply of drugs according to the drugs needed. This study uses the Jupyter Notebook application based on Python and data mining methods, especially the K-Means Clustering algorithm, to analyze patient medical record data based on age, blood pressure and disease diagnosis. With the K-Means Clustering Algorithm, it can also minimize variation in one cluster and maximize variation between clusters. With the research, Cluster C1 is a disease that often occurs with high intensity and has 49 members, Cluster C2 is a disease that occurs with intensity. Cluster 2 has 28 members, while Cluster C3 is a disease that occurs with low intensity and has 23 members.
Downloads
References
N. A. Sudibyo et al., “PENERAPAN DATA MINING PADA JUMLAH PENDUDUK,” vol. 1, no. 3, pp. 199–207, 2020.
S. N. Pendidikan, U. M. Semarang, and E. Kurniawan, “Analisa Data Rekam Medis Menggunakan Teknik Data Mining Association Rules Dengan Algoritma Clustering,” pp. 1–7.
U. Suriani, “Penerapan Data Mining untuk Memprediksi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma,” vol. 3, no. 2, pp. 55–66, 2023.
J. Faran and A. Triayudi, “Penerapan Algoritma K-Means Data Mining untuk Clustering Kinerja Karyawan Koperasi,” vol. 4, no. 4, pp. 2096–2108, 2024, doi: 10.30865/klik.v4i4.1728.
J. Informasi, J. Wandana, and S. Defit, “Klasterisasi Data Rekam Medis Pasien Pengguna Layanan BPJS Kesehatan Menggunakan Metode K-Means,” vol. 2, pp. 4–9, 2020, doi: 10.37034/jidt.v2i4.73.
D. Andreswari, R. Efendi, and K. Prastio, “CLUSTERING DATA REKAM MEDIS UNTUK PENENTUAN PENYAKIT DENGAN MENGIMPLEMENTASIKAN METODE FUZZY C-MEANS,” vol. 11, no. 1, 2023.
A. Gulo and M. Anis, “Analisa Dan Perancangan Sistem Pengelompokan Data Rekam Medis Pasien Pada Puskesmas Cipayung Depok Menggunakan Metode K-Means Berbasis Web,” vol. 2, no. 1, pp. 17–27, 2024.
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” Jurnal Ilmiah Informatika Dan Ilmu Komputer (Jima-Ilkom), vol. 3, no. 1, pp. 46–56, 2024, [Online]. Available: https://doi.org/10.58602/jima-ilkom.v3i1.26
F. Putri, A. Hasibuan, S. Sumarno, and I. Parlina, “Penerapan K-Means pada Pengelompokan Penjualan Produk Smartphone,” vol. 1, no. 1, pp. 15–20, 2021, doi: 10.54259/satesi.v1i1.3.
T. A. Aria, M. Julkarnain, and F. Hamdani, “Penerapan Algoritma K-Means Clustering Untuk Data Obat,” vol. 4, no. 1, pp. 649–657, 2023, doi: 10.30865/klik.v4i1.1117.
P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 1, pp. 20–33, 2023, doi: 10.56211/helloworld.v2i1.230.
H. L. Sari and I. Y. Beti, “Penerapan Data Mining Dalam Pengelompokkan Buku Yang Dipinjam Menggunakan Algoritma K-Means,” vol. 3, no. 6, pp. 925–933, 2023, doi: 10.30865/klik.v3i6.826.
M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, and D. Suhendro, “Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 30–38, 2021, doi: 10.37148/bios.v2i1.19.
J. Ilmu, S. Informasi, P. Marpaung, I. Pebrian, and W. Putri, “Penerapan Data Mining Untuk Pengelompokan Kepadatan Penduduk Kabupaten Deli Serdang Menggunakan Algoritma K-Means,” vol. 6, no. September, pp. 64–70, 2023.
A. Ali, “Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 1, pp. 186–195, 2019, doi: 10.30812/matrik.v19i1.529.
M. R. Alhapizi, M. Nasir, and I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” Journal of Software Engineering Ampera, vol. 1, no. 1, pp. 1–14, 2020, doi: 10.51519/journalsea.v1i1.10.
A. Of et al., “Penerapan Algoritma Floyd Warshall dengan Menggunakan Euclidean Distance dalam Menentukan Rute Terbaik,” Jurnal Ilmu Komputer …, pp. 312–321, 2023, [Online]. Available: https://jurnal.unity-academy.sch.id/index.php/jirsi/article/view/68%0Ahttps://jurnal.unity-academy.sch.id/index.php/jirsi/article/download/68/51
R. Nuraini, “Implementasi Euclidean Distance dan Segmentasi K-Means Clustering Pada Identifikasi Citra Jenis Ikan Nila,” vol. 3, no. 1, pp. 1–8, 2022.
Z. A. Setyawan, “Sistem Pakar Diagnosa Gejala Kecanduan Game Online dengan Metode Certainty Factor & Euclidean Distance Berbasis Web,” vol. 1, no. 1, 2023, doi: 10.54259/jdmis.v1i1.1521.
S. Saniah and Edy Victor Haryanto, “Rancang Bangun Aplikasi Pencarian Lokasi Vaksin Pada Puskesmas Di Kota Medan Menggunakan Metode Euclidean Distance Berbasis Android,” Jurnal ilmiah Sistem Informasi dan Ilmu Komputer, vol. 3, no. 1, pp. 01–11, 2023, doi: 10.55606/juisik.v3i1.365.