Forecasting Rice Prices Using the ARIMA Method: A Case Study in DKI Jakarta Province
Keywords:
ARIMA, Python, Forecasting Rice Prices, DKI Jakarta, Error Metrics, Grid SearchAbstract
Rice is a food structure with very important nutrients and is very much consumed by the people of Indonesia. The availability of rice in the country must be fulfilled because rice is a strategic and political food commodity. DKI Jakarta Province as the economic centre and capital city of the country has a strategic role in advancing the national economy, the movement of food commodity prices such as rice is often the centre of attention compared to other regions. Various factors can have an impact on the stability of rice prices and stocks, resulting in fluctuations in rice prices every month. For this reason, a programme is needed that can forecast the staple price of rice to illustrate the problem of food price instability in the future. In this research, we created a rice price forecasting programme using the Python programming language and Jupyter Notebook IDE by applying the ARIMA (Autoregressive Integrated Moving Average) time series method. The data used is a single data set containing rice prices in the period 2018 - 2023 with monthly granularity. The results of rice price forecasting are measured through 4 error metrics namely MSE, RMSE, MAE, and MAPE which show that the results are accurate with low error interpretation.
Downloads
References
Anandyani, A. R., Astutik, D. K. A., Bariroh, N., & Indrasetianigsih, A. (2021). Prediksi Rata-Rata Harga Beras Yang Dijual Oleh Pedagang Besar (Grosir) Menggunakan Metode Arima Box Jenkins. Teknosains: Media Informasi Sains Dan Teknologi, 15(2), 151. https://doi.org/10.24252/teknosains.v15i2.17721
BPS. (2022). Provinsi DKI Jakarta Dalam Angka DKI Jakarta Province In Figures 2022. 81–81.
Elsa Fitri, A., Nabila, D., Melenia, D., Guntoro Aji, L., Salwa Azmah, N., & Fadilah, S. (2021). Peramalan Harga Beras Pada Pasar Tradisional Di Indonesia Dengan Menggunakan Model Arima. DwijenAGRO, 11(1), 12–16. http://ejournal.undwi.ac.id/index.php/dwijenagro/article/view/1079%0Ahttp://ejournal.undwi.ac.id/index.php/dwijenagro/article/download/1079/950
Fadhlurrahman, I. (2024). Harga Beras Premium di DKI Jakarta Tiga Bulan Terakhir Turun 5,15%. https://databoks.katadata.co.id/datapublish/2024/06/07/harga-beras-premium-di-dki-jakarta-tiga-bulan-terakhir-turun-515
Fauzani, S. P., & Rahmi, D. (2023). Penerapan Metode ARIMA Dalam Peramalan Harga Produksi Karet di Provinsi Riau. Jurnal Teknologi Dan Manajemen Industri Terapan, 2(4), 269–277. https://doi.org/10.55826/tmit.v2i4.283
Lestiyanto Wibisono, Arman, & Taufikurohman, M. R. (2022). Analisis Ketersediaan Stok Beras Terhadap Harga Beras Di Dki Jakarta (Studi Kasus: Pasar Induk Beras Cipinang). Jurnal Bioindustri, 4(2), 149–163. https://doi.org/10.31326/jbio.v4i2.1007
Natasya, Musdalifah, S., & Andri. (2021). Prediksi Harga Beras Di Tingkat Perdagangan Besar Indonesia Menggunakan Algoritma Backpropagation. Jurnal Ilmiah Matematika Dan Terapan, 18(2), 148–159. https://doi.org/10.22487/2540766x.2021.v18.i2.15688
Naya, F. P., Berlianti, S. S., Parcha, N., & Kayla, A. (2024). Peramalan harga beras indonesia menggunakan metode arima. 6(2), 184–193.
Shidiq, B. G. A., Furqon, M. T., & Muflikhah, L. (2022). Prediksi Harga Beras menggunakan Metode Least Square. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(3), 1149–1154.
Wahyu ngestisari. (2020). The Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras. Indonesian Journal of Data and Science, 1(3), 96–107. https://doi.org/10.33096/ijodas.v1i3.18