Experimental Study Of The Performance Of The Thermal Energy Water Pump Using Tilled Evaporator

Authors

  • Christian Halim a:1:{s:5:"en_US";s:38:"University of Sanata Dharma Yogyakarta";}

DOI:

https://doi.org/10.58471/esaprom.v1i01.1405

Keywords:

water pump, thermal energy, diethyl ether, power, efficiency

Abstract

Water is one of the important or basic needs for human life. The availability of water in Indonesia is an advantage that our nation has that has not been optimized. Generally, water pumps are driven by electrical energy, but it is possible to be driven by other energy, namely petroleum energy (with a combustion motor). Alternative energy that can be used is thermal energy. Thermal energy can come from coal, solar energy, geothermal or waste heat from industries that are no longer used. The purpose of this study was to determine the discharge, pump power and maximum efficiency. The working fluid used is diethyl ether. The heat comes from an electric stove which will heat the working fluid, namely diethyl ether. The variables measured were temperature, volume and pumping time. Variables that are varied are variations in the height of the pumping head, (1) 170cm, (2) 244cm and (3) 325cm. Variations in the volume of diethyl ether in the reservoir tube, (1) 653ml, (2) 717ml and (3) 844ml. Variations in the volume of compressed air in the compressed tube, (1) 5.49 liters, (2) 4.71 liters, and (3) 3.14 liters. Variations in the use of compressed air tubes, (1) one compressed air tube and (2) two compressed air tubes. The results showed that the maximum discharge of 0.63 liters/minute was obtained at variations in the height of the pumping head 1.7m, ether volume 653ml, compressed air volume 3.14 liters, and using one compressed air tube. The maximum pump power of 0.185 watt and the maximum pump efficiency of 0.047% were obtained at variations in pumping head height of 3.25m, volume of ether 653ml, compressed air volume of 3.14 liters, and using one compressed air tube.

References

A. Irawan, “METODE RASIONAL ( Studi Kasus Desa Kasang Kecamatan Kuantan Mudik ),” Perenc. SALURAN DRAINASE DENGAN Metod. RASIONAL (Studi Kasus Desa Kasang Kec. Kuantan Mudik), vol. 1, 2019.

U. H. Mattotorang, “STUDI PENGARUH LEBAR SUNGAI TERHADAP KARAKTERISTIK ALIRAN SEDIMEN DI DASAR,” PENA Tek. J. Ilm. Ilmu-Ilmu Tek., vol. 4, no. 1, 2019, doi: 10.51557/pt_jiit.v4i1.217.

K. B. Kusuma, C. G. I. Partha, and I. W. Sukerayasa, “Perancangan Sistem Pompa Air Dc Dengan Plts 20 kWp Tianyar Tengah Sebagai Suplai Daya Untuk Memenuhi Kebutuhan Air,” J. SPEKTRUM, vol. 7, no. 2, 2020.

R. Arifin, M. Malyadi, E. Kurniawan, and Z. U. Rosyidin, “Upaya Peningkatan Efektifitas Pengairan Sawah dengan Sistem Kontrol Pompa Air Listrik,” Din. J. Pengabdi. Kpd. Masy., vol. 3, no. 2, 2020, doi: 10.31849/dinamisia.v3i2.3245.

Y. Maulana, Y. S. Gaos, and I. Wiradinata, “ANALISIS KESEIMBANGAN TERMAL SISTEM PENDINGIN MESIN PEMBANGKIT LISTRIK ORC (ORGANIC RANKINE CYCLE) KAPASITAS 500 kW,” AME (Aplikasi Mek. dan Energi) J. Ilm. Tek. Mesin, vol. 5, no. 1, 2019, doi: 10.32832/ame.v5i1.2354.

P. A. Hendrayanto, H. D. Wahjono, R. H. Indiratmoko, Y. W. Nugraha, I. Kustianto, and M. Miranda, “RANCANG BANGUN SISTEM SAMPLING AIR TENAGA SURYA GUNA MENDUKUNG TEKNOLOGI ONLINE MONITORING KUALITAS AIR DI REMOTE AREA,” J. Air Indones., vol. 11, no. 2, 2020, doi: 10.29122/jai.v11i2.3942.

P. Rejekiningrum and B. Kartiwa, “Pengembangan Sistem Irigasi Pompa Tenaga Surya Hemat Air Dan Energi Untuk Antisipasi Perubahan Iklim Di Kabupaten Bantul, Daerah Istimewa Yogyakarta,” J. Tanah dan Iklim, vol. 41, no. 2, 2020, doi: 10.21082/jti.v41n2.2017.159-171.

O. Jaelani and H. Suripto, “Analisis Performa dan Nilai Ekonomi Sistem Solar Cell Untuk Pengoperasian Pompa Air dengan Metode Eksperimental,” J. Rekayasa Mesin, vol. 15, no. 1, 2020, doi: 10.32497/jrm.v15i1.1742.

I. Hoetama, M. Yasar, and R. Bulan, “Uji Kinerja Pompa Air Tenaga Surya Untuk Irigasi,” J. Ilm. Mhs. Pertan., vol. 4, no. 3, 2019, doi: 10.17969/jimfp.v4i3.11492.

A. B. Pulungan, J. Sardi, and J. T. Elektro, “Pemasangan Sistem Hybrid Sebagai Penggerak Pompa Air,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 5, no. 2, 2019.

J. S. Telaumbanua and E. Maulana, “PERANCANGAN SISTEM TERMAL PADA ORC KAPASITAS 10 KW,” J. Penelit. DAN KARYA Ilm. Lemb. Penelit. Univ. TRISAKTI, vol. 5, no. 2, 2020, doi: 10.25105/pdk.v5i2.7358.

A. B. Primawan and Iswanjono, “SISTEM POMPA AIR TENAGA SURYA : PEMANFAATAN ENERGI SURYA UNTUK PENYEDIAAN AIR BERSIH DUSUN,” J. Pengabdi. Kpd. Masy., vol. 2, no. 1, 2019.

J. Long, R. Zhang, J. Lu, and F. Xu, “Heat transfer performance of an integrated solar-air source heat pump evaporator,” Energy Convers. Manag., vol. 184, 2019, doi: 10.1016/j.enconman.2019.01.094.

J. M. Brown, “Lesson 23: Condensers & Evaporators,” A.U.A. Lang. Cent. Thai Course, 2019.

S. Grądziel, “Analysis of thermal and flow phenomena in natural circulation boiler evaporator,” Energy, vol. 172, 2019, doi: 10.1016/j.energy.2019.02.003.

Downloads

Published

2022-01-20

How to Cite

Halim, C. (2022). Experimental Study Of The Performance Of The Thermal Energy Water Pump Using Tilled Evaporator. Jurnal Ilmiah Multidisiplin Indonesia (JIM-ID), 1(01), 30–36. https://doi.org/10.58471/esaprom.v1i01.1405