Oral Red Pomegranate (Punica granatum) Extract Administration to Elevate Blood Glutathione Peroxidase Levels in Female Wistar Rats (Rattus Norvegicus) Following Maximum Physical Activity

Authors

  • Liena Liena Master Study Program in Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, Prima Indonesia University, Medan
  • Rahma Sari Master Study Program in Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, Prima Indonesia University, Medan
  • Fioni Fioni Master Study Program in Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, Prima Indonesia University, Medan

Keywords:

Red Pomegranate, Glutathione Peroxidase Levels, Antioxidant, Reactive Oxygen Species

Abstract

There is a significant danger to human health from oxidative stress. This disorder does not have any apparent symptoms. However, it is linked to the start and progression of many diseases. There are also no established medical procedures for detecting oxidative stress. Finding out how oral administration of red pomegranate (Punica granatum) extract increases blood glutathione peroxidase levels in female rats (Rattus norvegicus) strains is the goal of this experimental quantitative study, which employs a pre-test-post-test control group design. Maximum physical activity was induced in Wistar rats. Twenty-four animals were used in the experiments, with six in each group. Three, four, and five milliliters of red pomegranate extract were used in this experiment. With an antioxidant value of 8.33 ppm, pomegranate extract (Punica granatum) was determined to have a very robust action, according to the research. In terms of composition, the 5-milliliter dose of red pomegranate (Punica granatum) extract outperforms the others when compared to average levels of glutathione peroxidase. Researchers discovered that supplementing with red pomegranate extract (Punica granatum) considerably raised glutathione peroxidase levels, suggesting that this fruit may aid in the body's antioxidant defenses against free radicals generated by strenuous exercise.

References

Adeeyo, A. O., Ndou, T. M., Alabi, M. A., Mkoyi, H. D., Enitan, E. M., Beswa, D., Makungo, R., & Odiyo, J. O. (2021). Structure: Activity and Emerging Applications of Spices and Herbs. In R. S. Ahmad (Ed.), Herbs and Spices - New Processing Technologies. IntechOpen. https://doi.org/10.5772/intechopen.99661

Akbari, B., Baghaei-Yazdi, N., Bahmaie, M., & Mahdavi Abhari, F. (2022). The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors, 48(3), 611–633. https://doi.org/10.1002/biof.1831

Angulo, J., El Assar, M., Álvarez-Bustos, A., & Rodríguez-Mañas, L. (2020). Physical activity and exercise: Strategies to manage frailty. Redox Biology, 35(March), 101513. https://doi.org/10.1016/j.redox.2020.101513

Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., Kumar, S., Bhatti, G. K., & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114–134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019

Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057–1073. https://doi.org/10.2147/JIR.S275595

El Assar, M., Álvarez-Bustos, A., Sosa, P., Angulo, J., & Rodríguez-Mañas, L. (2022). Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. International Journal of Molecular Sciences, 23(15). https://doi.org/10.3390/ijms23158713

Engwa, G. A. (2018). Free Radicals and the Role of Plant Phytochemicals as Antioxidants Against Oxidative Stress-Related Diseases. In Phytochemicals - Source of Antioxidants and Role in Disease Prevention (pp. 49–73). IntechOpen. https://doi.org/10.5772/intechopen.76719

Galano, A., & Alvarez-Idaboy, J. R. (2019). Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow? International Journal of Quantum Chemistry, 119(2), 1–23. https://doi.org/10.1002/qua.25665

Ghozali, I. (2018). Aplikasi Analisis Multivariate dengan Program IBM SPSS 25. In Badan Penerbit Universitas Diponegoro.

Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. In Archives of Toxicology (Vol. 97, Issue 10). Springer Berlin Heidelberg. https://doi.org/10.1007/s00204-023-03562-9

Kendall, L. V., Owiny, J. R., Dohm, E. D., Knapek, K. J., Lee, E. S., Kopanke, J. H., Fink, M., Hansen, S. A., & Ayers, J. D. (2018). Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents. ILAR Journal, 59(2), 177–194. https://doi.org/10.1093/ilar/ily021

Leesombun, A., Sariya, L., Taowan, J., Nakthong, C., Thongjuy, O., & Boonmasawai, S. (2022). Natural Antioxidant, Antibacterial, and Antiproliferative Activities of Ethanolic Extracts from Punica granatum L. Tree Barks Mediated by Extracellular Signal-Regulated Kinase. Plants, 11(17). https://doi.org/10.3390/plants11172258

Lim, H. W., Kohli, I., Ruvolo, E., Kolbe, L., & Hamzavi, I. H. (2022). Impact of visible light on skin health: The role of antioxidants and free radical quenchers in skin protection. Journal of the American Academy of Dermatology, 86(3), S27–S37. https://doi.org/https://doi.org/10.1016/j.jaad.2021.12.024

Mironczuk-Chodakowska, I., Witkowska, A. M., & Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences, 63, 68–78.

Moga, A., Dimienescu, O. G., Balan, A., Dima, L., Toma, S. I., Bîgiu, N. F., & Blidaru, A. (2021). Pharmacological and therapeutic properties of Punica granatum phytochemicals: Possible roles in breast cancer marius. Molecules, 26(4). https://doi.org/10.3390/molecules26041054

Molyneux, P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 50(June 2003), 211–219.

Nakai, K., & Tsuruta, D. (2021). What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910799

Nakamura, H., & Takada, K. (2021). Reactive oxygen species in cancer: Current findings and future directions. Cancer Science, 112(10), 3945–3952. https://doi.org/10.1111/cas.15068

Notoatmodjo, S. (2022). Metodologi Penelitian Kesehatan (3rd ed.). Jakarta: Rineka Cipta.

Oppert, J. M., Bellicha, A., van Baak, M. A., Battista, F., Beaulieu, K., Blundell, J. E., Carraça, E. V., Encantado, J., Ermolao, A., Pramono, A., Farpour-Lambert, N., Woodward, E., Dicker, D., & Busetto, L. (2021). Exercise training in the management of overweight and obesity in adults: Synthesis of the evidence and recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obesity Reviews, 22(S4), 1–12. https://doi.org/10.1111/obr.13273

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/8416763

Polidori, M. C., & Mecocci, P. (2022). Modeling the dynamics of energy imbalance: The free radical theory of aging and frailty revisited. Free Radical Biology and Medicine, 181(December 2021), 235–240. https://doi.org/10.1016/j.freeradbiomed.2022.02.009

Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001

Qiu, S., Liang, J., Hou, Y., Zhou, X., Zhou, Y., Wang, J., Zou, B., Xing, W., & Hu, Y. (2022). Hindered phenolic antioxidant passivation of black phosphorus affords air stability and free radical quenching. Journal of Colloid and Interface Science, 606, 1395–1409. https://doi.org/10.1016/j.jcis.2021.08.098

Ribeiro, F. M., Volpato, H., Lazarin-Bidóia, D., Desoti, V. C., de Souza, R. O., Fonseca, M. J. V., Ueda-Nakamura, T., Nakamura, C. V., & Silva, S. de O. (2018). The extended production of UV-induced reactive oxygen species in L929 fibroblasts is attenuated by posttreatment with Arrabidaea chica through scavenging mechanisms. Journal of Photochemistry and Photobiology B: Biology, 178(November 2017), 175–181. https://doi.org/10.1016/j.jphotobiol.2017.11.002

Sessa, F., Messina, G., Russo, R., Salerno, M., Castruccio Castracani, C., Distefano, A., Li Volti, G., Calogero, A. E., Cannarella, R., Mongioi’, L. M., Condorelli, R. A., & La Vignera, S. (2020). Consequences on aging process and human wellness of generation of nitrogen and oxygen species during strenuous exercise. Aging Male, 23(1), 14–22. https://doi.org/10.1080/13685538.2018.1482866

Silina, E. V., Stupin, V. A., Abramov, I. S., Bolevich, S. B., Deshpande, G., Achar, R. R., & Sinelnikova, T. G. (2022). Oxidative Stress and Free Radical Processes in Tumor and Non-Tumor Obstructive Jaundice: Influence of Disease Duration, Severity and Surgical Treatment on Outcomes. Pathophysiology, 29(1), 32–51. https://doi.org/10.3390/pathophysiology29010005

Simioni, C., Zauli, G., Martelli, A. M., Vitale, M., Gonelli, A., & Neri, L. M. (2018). Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget, 9(24), 17181–17198. https://doi.org/10.18632/oncotarget.24729

Strycharz-Dudziak, M., Kiełczykowska, M., Drop, B., Świątek, Ł., Kliszczewska, E., Musik, I., & Polz-Dacewicz, M. (2019). Total Antioxidant Status (TAS), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx) in Oropharyngeal Cancer Associated with EBV Infection. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/5832410

Suwarno, B., & Nugroho, A. (2023). Kumpulan Variabel-Variabel Penelitian Manajemen Pemasaran (Definisi & Artikel Publikasi) (1st ed.). Bogor: Halaman Moeka Publishing.

Tauffenberger, A., & Magistretti, P. J. (2021). Reactive Oxygen Species: Beyond Their Reactive Behavior. Neurochemical Research, 46(1), 77–87. https://doi.org/10.1007/s11064-020-03208-7

Verhaegen, D., Smits, K., Osório, N., & Caseiro, A. (2022). Oxidative Stress in Relation to Aging and Exercise. Encyclopedia, 2(3), 1545–1558. https://doi.org/10.3390/encyclopedia2030105

Wang, F., Wang, X., Liu, Y., & Zhang, Z. (2021). Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/3846122

Downloads

Published

2023-12-20

How to Cite

Liena, L., Rahma Sari, & Fioni, F. (2023). Oral Red Pomegranate (Punica granatum) Extract Administration to Elevate Blood Glutathione Peroxidase Levels in Female Wistar Rats (Rattus Norvegicus) Following Maximum Physical Activity. Jurnal EduHealth, 14(04), 700–710. Retrieved from https://ejournal.seaninstitute.or.id/index.php/healt/article/view/3599