Chemical And Physical Evaluation Of Herbal Artificial Saliva Formulations-Scoping Review
Keywords:
artificial saliva, herbal, chemical and physical, rheologyAbstract
Saliva plays an important role in physiological function. Alteration in saliva production results in serious health problems that affect patient oral health-related quality of life (OHRQiL). the purpose of the research was to investigate the chemical and physical evaluation of natural artificial saliva formulations. Methods, the data synthesis protocol for a rapid review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocol (PRISMA-P). Electronic databases were searched on articles published in 2004- 2024. evaluating Chemical and physical properties of herbal artificial saliva formulations in preclinical study. Results, Identification from the Science Direct and PubMed databases obtained 332 scientific articles and 3 articles met inclusion criteria. Basella alba Linn. (Ceylon Spinach mucilage) shows non-Newtonian characteristic fluid, similar to normal human saliva. It has antioxidative activity, adhesion inhibition, and non-toxic. Propolis extract and Aloe vera extract showed minimal effect on viscoelastic properties but were still in the range of normal human saliva. Dioscorea batatas (Yam tuber mucilage) viscosity shows non-Newtonian characteristic fluid and antibacterial activity by influenced the enzymatic activity of lysozyme and peroxidase. Conclusion, Chemical and physiological evaluation shows that herbal plant extract has the potential to be used as an artificial saliva constituent. It had a viscosity in the range of normal human saliva with several advantages in terms of pharmacological activity.
References
Alhejoury, H., Mogharbel, L., Al-Qadhi, M., Shamlan, S., Alturki, A., Babatin, W., Pullishery, F. (2021). Artificial saliva for therapeutic management of xerostomia: A narrative review. Journal of Pharmacy And Bioallied Sciences, 13(6), 903. https://doi.org/10.4103/jpbs.jpbs_236_21
Ali, S., Farooq, I., Bugshan, A., Siddiqui, I. A., Al-Khalifa, K. S., & Al-Hariri, M. (2021). Efficacy of propolis in remineralising artificially induced demineralisation of human enamel - An in-vitro study. Journal of Taibah University Medical Sciences, 16(2), 283–287. https://doi.org/10.1016/j.jtumed.2020.10.022
Anani, H., Elasser, D., Niazy, M., Jamil, W., & Elsharkawy, D. (2023). Evaluation of the remineralization and antibacterial effect of natural versus synthetic materials on deep carious dentin: A randomized controlled trial. Dental and Medical Problems, 60(1), 87–97. https://doi.org/10.17219/dmp/147075
Austin, W., Hdeib, M., Fraser, P., Goldchtaub, M., Shams, E., Han, T., Adibnia, V. (2024). Lubricants for Treatment of Dry Mouth, 1–29.
Aykut-Yetkiner, A., Wiegand, A., & Attin, T. (2014). The effect of saliva substitutes on enamel erosion in vitro. Journal of Dentistry, 42(6), 720–725. https://doi.org/10.1016/j.jdent.2014.03.012
Bugarin-Castillo, Y., Fadel, P. B., Ismail, S. M., Huang, N., Saint-Eve, A., Mathieu, V., & Ramaioli, M. (2024). On the rheological and sensory properties of a novel natural salivary substitute. European Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.ejps.2024.106802
Deo, P. N., & Deshmukh, R. (2017). Alteration of cellular metabolism in cancer cells and its therapeutic. Journal of Oral and Maxillofacial Pathology, 21(3), 244–251. https://doi.org/10.4103/jomfp.JOMFP
Farinone, M., Foglio Bonda, A., Foglio-Bonda, Pi. L., & Pattarino, F. (2018). ARTIFICIAL SALIVA SUBSTITUTES EVALUATION: THE ROLE OF SOME CHEMICAL-PHYSICAL PROPERTIES, 7, 67–70.
Farooq, I., & Bugshan, A. (2020). The role of salivary contents and modern technologies in the remineralization of dental enamel: A narrative review. F1000Research, 9, 1–14. https://doi.org/10.12688/f1000research.22499.2
Foglio-, P. L. (2018). Artificial saliva substitutes evaluation: The role of some chemical-physical properties. Global Journal for Research Analysis, 7(2), 67–70.
Foglio-Bonda, A., Foglio-Bonda, P. L., Bottini, M., Pezzotti, F., & Migliario, M. (2022). Chemical-physical characteristics of artificial saliva substitutes: rheological evaluation. European Review for Medical and Pharmacological Sciences, 26(21), 7833–7839. https://doi.org/10.26355/eurrev_202211_30132
Fracasso, J. A. R., Ibe, M. B., da Costa, L. T. S., Guarnier, L. P., Viel, A. M., Brito, G. R. de, Santos, L. dos. (2023). Anti-Inflammatory Effect and Toxicological Profile of Pulp Residue from the Caryocar Brasiliense, a Sustainable Raw Material. Gels, 9(3). https://doi.org/10.3390/gels9030234
Ingle, E. N. (2020). Artificial Saliva for Therapeutic Management of Xerostomia: A Structured Review. Journal of Oral Health and Community Dentistry. https://doi.org/10.5005/jp-journals-10062-0064
Kho, H. S., Park, M. S., Chang, J. Y., & Kim, Y. Y. (2014). Yam tuber mucilage as a candidate substance for saliva substitute: In vitro study of its viscosity and influences on lysozyme and peroxidase activities. Gerodontology, 31(1), 34–41. https://doi.org/10.1111/ger.12000
Lysik, D., Niemirowicz-Laskowska, K., Bucki, R., Tokajuk, G., & Mystkowska, J. (2019). Artificial saliva: Challenges and future perspectives for the treatment of xerostomia. International Journal of Molecular Sciences, 20(13). https://doi.org/10.3390/ijms20133199
Manosroi, A., Pattamapun, K., Chankhampan, C., Kietthanakorn, B. on, Kitdamrongtham, W., Zhang, J., & Manosroi, J. (2020). A biological active artificial saliva formulation containing flower mucilage from Ceylon Spinach (Basella alba Linn.). Saudi Journal of Biological Sciences, 27(3), 769–776. https://doi.org/10.1016/j.sjbs.2020.01.007
Marcinkowska-Gapińska, A., Linkowska-Świdzińska, K., Świdziński, T., & Surdacka, A. (2018). Rheological parameters of saliva in comparison with taste examination. Biorheology, 55(1), 51–60. https://doi.org/10.3233/BIR-180171
Marimuthu, D., Han, K. M., Mohamad, M. S. F., & Azman, M. (2021). Saliva substitute mouthwash in nasopharyngeal cancer survivors with xerostomia: a randomized controlled trial. Clinical Oral Investigations, 25(5), 3105–3115. https://doi.org/10.1007/s00784-020-03634-5
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., … Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1–9. https://doi.org/10.1186/2046-4053-4-1
Piaton, S., Duconseille, A., Roger-Leroi, V., & Hennequin, M. (2021). Could the use of saliva substitutes improve food oral processing in individuals with xerostomia? A systematic review. Journal of Texture Studies, 52(3), 278–293. https://doi.org/10.1111/jtxs.12591
Purdie, M. J., Carpenter, M. D., Noll, J. L., Stephens, C. L., Taylor, Y. J., Hammitt, K. M., Brennan, M. T. (2023). Patient satisfaction and impact of salivary flow rate on effectiveness of xerostomia products. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 135(2), 236–241. https://doi.org/10.1016/j.oooo.2022.08.017
Roever, L. (2018). PICO: Model for clinical questions. Evidence-Based Medicine, 3(2), 1–2. https://doi.org/10.4172/2471-9919.1000115
See, L., Mohammadi, M., Han, P. P., Mulligan, R., & Enciso, R. (2019). Efficacy of saliva substitutes and stimulants in the treatment of dry mouth. Special Care in Dentistry, 39(3), 287–297. https://doi.org/10.1111/scd.12370
Sharma, D., Samanta, P., Guha, P., & Mishra, S. (2023). Synthesis and characterization of artificial saliva using Abelmoschus esculentus. Journal of Biologically Active Products from Nature, 13(6), 573–582. https://doi.org/10.1080/22311866.2023.2286247
Srisomboon, S., Intharah, T., Jarujareet, U., Toneluck, A., & Panpisut, P. (2024). The in vitro assessment of rheological properties and dentin remineralization of saliva substitutes containing propolis and aloe vera extracts. PLoS ONE, 19(5 MAY), 1–18. https://doi.org/10.1371/journal.pone.0304156
Vinke, J., Kaper, H. J., Vissink, A., & Sharma, P. K. (2020). Correction to: Dry mouth: saliva substitutes which adsorb and modify existing salivary condition films improve oral lubrication (Clinical Oral Investigations, (2020), 24, 11, (4019-4030), 10.1007/s00784-020-03272-x).
Wagner, C. E., & McKinley, G. H. (2017). Age-dependent capillary thinning dynamics of physically-associated salivary mucin networks. Journal of Rheology, 61(6), 1309–1326. https://doi.org/10.1122/1.4997598
Wan, H., Vissink, A., & Sharma, P. K. (2020). Enhancement in Xerostomia Patient Salivary Lubrication Using a Mucoadhesive. Journal of Dental Research, 99(8), 914–921. https://doi.org/10.1177/0022034520917675