Indonesian Vehicle License Plate Identification Using YoloV5 and OCR
Keywords:
License Plate, Machine Learning, YoloV5Abstract
In response to escalating urbanization and vehicular density, this research addresses the imperative for public safety and traffic management. The relationship between public safety and traffic control highlights the importance of strong identification systems. This research aims to make a licence plate identification by using the YOLOv5 for adept object detection and complementing it with Optical Character Recognition (OCR), the study enhances license plate recognition precision. The result of this research on a dataset of 100, through the utilization of this approach, the research achieved a perfect accuracy rate of 100% in identifying vehicle plates, while the accuracy rate for character recognition on vehicle plates was at 90%.
Downloads
References
A. Solichin and Z. Rahman, “Aplikasi identifikasi nomor kendaraan berbasis android dengan metode learning vector quantization,” J. TICOM, vol. 3, no. 3, pp. 216–222, 2015.
H. Fitriawan, “Identifikasi Plat Nomor Kendaraan Secara Off-Line,” Electr. dan Teknol. Elektro, vol. 6, no. 2, pp. 123–126, 2012.
S. Aulia, P. Maria, and R. Ramiati, “Aplikasi Pendeteksi Plat Nomor Kendaraan Berbasis Raspberry Pi Menggunakan Website Untuk Pelanggaran Lalu Lintas,” Elektron J. Ilm., vol. 11, no. 2, pp. 84–89, 2019, doi: 10.30630/eji.11.2.126.
A. Sani and D. A. Rahmadani, “Two Wheel Vehicle License Plate Detection System with Image Processing,” no. Icae 2020, pp. 75–80, 2021, doi: 10.5220/0010351900750080.
H. Diwanti, I. S. Sumaryo, and C. Setianingsih, “Real time smart CCTV untuk mendeteksi plat nomor kendaraan menggunakan optical character recognition real time smart CCTV to detect vehicle license plate using optical character recognition,” e-Proceeding Eng., vol. 6, no. 2, pp. 3045–3052, 2019.
A. Susanto, “Penerapan Operasi Morfologi Matematika Citra Digital Untuk Ekstraksi Area Plat Nomor Kendaraan Bermotor,” Pseudocode, vol. 6, no. 1, pp. 49–57, 2019, doi: 10.33369/pseudocode.6.1.49-57.
I. H. Al amin and A. Aprilino, “Implementasi Algoritma Yolo Dan Tesseract Ocr Pada Sistem Deteksi Plat Nomor Otomatis,” J. Teknoinfo, vol. 16, no. 1, p. 54, 2022, doi: 10.33365/jti.v16i1.1522.
J. Yan, S. Lin, S. B. Kang, and X. Tang, “Learning the change for automatic image cropping,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 971–978, 2013, doi: 10.1109/CVPR.2013.130.
E. I. Sela and M. Ihsan, “Deteksi Kualitas Telur Menggunakan Analisis Tekstur,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 199, 2017, doi: 10.22146/ijccs.24756.
F. D. Wibowo, I. Palupi, and B. A. Wahyudi, “Image Detection for Common Human Skin Diseases in Indonesia Using CNN and Ensemble Learning Method,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 527–535, 2022, doi: 10.47065/josyc.v3i4.2151.
A. Saraswati and M. Jannah, “Analisis Perbandingan Algoritma Edge Detection Pada Plat Kendaraan Bermotor,” vol. 3, no. 3, pp. 150–158, 2021.
C. L. Salui, “Methodological Validation for Automated Lineament Extraction by LINE Method in PCI Geomatica and MATLAB based Hough Transformation,” J. Geol. Soc. India, vol. 92, no. 3, pp. 321–328, 2018, doi: 10.1007/s12594-018-1015-6.
R. Schramm, “Rectangle Detection based on a Windowed Hough Transform”.
A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” 2018 Int. Interdiscip. PhD Work. IIPhDW 2018, pp. 117–122, 2018, doi: 10.1109/IIPHDW.2018.8388338.
F. Zhang, Z. Li, B. Zhang, H. Du, B. Wang, and X. Zhang, “Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease,” Neurocomputing, vol. 361, pp. 185–195, 2019, doi: 10.1016/j.neucom.2019.04.093.
K. A. Baihaqi and C. Zonyfar, “Deteksi Lahan Pertanian Yang Terdampak Hama Tikus Menggunakan Yolo v5,” Syntax J. Inform., vol. 11, no. 02, pp. 1–9, 2022.
L. M. Fleuren et al., “Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy,” Intensive Care Med., vol. 46, no. 3, pp. 383–400, 2020, doi: 10.1007/s00134-019-05872-y.