Implementation Of Clara Clustering Algorithm On Modis Data For Detection Of Forest Fire Potential In Indonesia

Authors

  • Holbed Joshua Petty Informatics Engineering, Faculty of Information Technology, Satya Wacana Christian University, Indonesia
  • Sri Yulianto Joko Prasetyo Informatics Engineering, Faculty of Information Technology, Satya Wacana Christian University, Indonesia

DOI:

https://doi.org/10.54209/infosains.v14i02.4122

Keywords:

CLARA, Clustering, Forest and land fires, MODIS, Silhouette Coefficient

Abstract

Forest fires are a recurring issue every year in various countries, especially in those with extensive forests like Indonesia. An initial step in fire prevention is detecting the potential occurrence of fires, which can be achieved by utilizing satellite data, such as MODIS data. In this study, clustering or grouping of MODIS data in Indonesia for the years 2021 and 2022 was conducted using the CLARA algorithm due to its robustness against outliers and efficiency in handling large datasets. The application of clustering with the CLARA algorithm on both datasets resulted in two clusters, and the evaluation using the Silhouette Coefficient yielded values of 0.89 and 0.88 for both years. The analysis revealed that both clusters in both datasets exhibited similar characteristics. In the data for the years 2021 and 2022, the first cluster displayed a moderate to high potential for fire, while the second cluster indicated a low potential for fire. The results of this study can be used as a reference for authorities to identify the level of forest/land fire potential from observed hotspots in Indonesia, thus enabling early prevention measures such as early extinguishment to prevent further spread of the fire.

Downloads

Download data is not yet available.

References

V. Mala, A. Kusuma, M. Tanzil Furqon, and L. Muflikhah. (2017). Implementasi Metode Fuzzy Subtractive Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 9, pp. 876–884. [Online]. Available: http://j-ptiik.ub.ac.id

A. Humam, M. Hidayat, A. Nurrochman, A. I. Anestatia, A. Yuliantina, and S. P. Aji. (2020). Identifikasi Daerah Kerawanan Kebakaran Hutan dan Lahan Menggunakan Sistem Informasi Geografis dan Penginderaan Jauh di Kawasan Tanjung Jabung Barat Provinsi Jambi. Jurnal Geosains dan Remote Sensing, vol. 1, no. 1, pp. 32–42. doi: 10.23960/jgrs.2020.v1i1.14.

F. Rozi, A. A. Akbar, and U. Kadaria. (2020). Hubungan sebaran titik panas (hotspot) terhadap kesehatan masyarakat kota Pontianak. Jurnal TEKNIK-SIPIL, vol. 20, no. 2.

B. Kresna Amijaya, M. T. Furqon, and C. Dewi. (2018). Clustering Titik Panas Bumi Menggunakan Algoritme Affinity Propagation. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3835–3842. [Online]. Available: http://j-ptiik.ub.ac.id

D. F. Pramesti, M. Tanzil Furqon, and C. Dewi. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 9, pp. 723–732. [Online]. Available: http://j-ptiik.ub.ac.id

E. Lidrawati, S. Bahri, U. F. Zubaedi, V. P. Carolina, K. Kusrini, and D. Maulina. (2022). Implementasi Metode CLARA Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot). Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 507–511. doi: 10.47065/josyc.v3i4.2006.

Y. Dou, R. Huang, L. R. Mansaray, and J. Huang. (2020). Mapping high temperature damaged area of paddy rice along the Yangtze River using Moderate Resolution Imaging Spectroradiometer data. Int J Remote Sens, vol. 41, no. 2, pp. 471–486, Jan. 2020, doi: 10.1080/01431161.2019.1643936.

N. S. L. Zulfa and A. Hadiana. (2021). Kajian Data Mining Menggunakan Algoritma K-Means Dan K-Medoids Dalam Strategi Promosi (Studi Kasus: Universitas Islam Al-Ihya Kuningan). Jurnal Fakultas Teknik Kuningan, vol. 2, no. 2, pp. 57–62.

W. AS, M. K. Aidid, and M. Nusrang. (2019). Pengelompokan Kabupaten/Kota Provinsi Sulawesi Selatan dan Barat Berdasarkan Angka Partisipasi Pendidikan SMA/SMK/MA Menggunakan K-Medoid dan CLARA. VARIANSI: Journal of Statistics and Its application on Teaching and Research, vol. 1, no. 3, p. 48. doi: 10.35580/variansiunm12899.

P.-N. Tan, M. Steinbach, and V. Kumar. (2016). Introduction to data mining. Pearson Education India.

I. Hidayatur Rifa, H. Pratiwi, and Respatiwulan. (2019).Implementasi Algoritma Clara Untuk Data Gempa Bumi Di Indonesia,” SEMINAR NASIONAL PENELITIAN PENDIDIKAN MATEMATIKA, pp. 161–166.

D. Suyanto. (2017). Data Mining untuk klasifikasi dan klasterisasi data. Bandung: Informatika Bandung.

Retsya Lapiza, Syafriandi, N. Amalita, and D. Fitria. (2023). Grouping The Districts in Sumatera Region Based on Economic Development Indicators Using K-Medoids and CLARA Methods. UNP Journal of Statistics and Data Science, vol. 1, no. 1, pp. 16–22. doi: 10.24036/ujsds/vol1-iss1/13.

M. K. Pakhira. (2008). Fast image segmentation using modified CLARA algorithm,” in 2008 International Conference on Information Technology, IEEE. pp. 14–18.

M. Chinchmalatpure and M. P. Dhore. (2020). Quality Healthcare Prediction using K Means And Clara Partition Based Clustering Algorithm For Big Data Analytics,” Int J Eng Adv Technol, vol. 9, no. 3, pp. 1140–1144. doi: 10.35940/ijeat.C4828.029320.

B. E. Susilowati and R. Sihombing. (2020). Metode ROBPCA (Robust Principal Component Analysis) dan Clara (Clustering Large Area) pada Data dengan Outlier (Studi Kasus Data Laporan Indeks Kebahagiaan Dunia Tahun 2018). Jurnal Ilmu Komputer, vol. 8, no. 2, pp. 88–98.

W. Nugraha, M. S. Maulana, and A. Sasongko. (2020). Clustering Based Undersampling for Handling Class Imbalance in C4.5 Classification Algorithm. in Journal of Physics: Conference Series, IOP Publishing Ltd. doi: 10.1088/1742-6596/1641/1/012014.

P. R. Fitrayana and D. R. S. Saputro. (2022). Algoritme Clustering Large Application (CLARA) untuk Menangani Data Outlier. PRISMA, Prosiding Seminar Nasional Matematika, vol. 5, pp. 721–725. [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

S. Paembonan and H. Abduh. (2021). Penerapan Metode Silhouette Coeficient Untuk Evaluasi Clutering Obat. Jurnal Ilmiah Ilmu - Ilmu Teknik, vol. 6, no. 2, pp. 48–54, 2021, [Online]. Available: https://ojs.unanda.ac.id/index.php/jiit/index

Athifaturrofifah, R. Goejantoro, and D. Yuniarti. (2019). Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Studi Kasus : Data Titik Panas Di Indonesia Pada 28 April 2018) Comparison of K-Means And K-Medoids Grouping Data on Potential Forest / Land Fires Based on Hotspots Distribution (Case study : Hotspots Data in Indonesia on April 28, 2018),” Jurnal EKSPONENSIAL, vol. 10, no. 2.

Downloads

Published

2024-04-26

How to Cite

Petty, H. J., & Prasetyo, S. Y. J. (2024). Implementation Of Clara Clustering Algorithm On Modis Data For Detection Of Forest Fire Potential In Indonesia. Jurnal Info Sains : Informatika Dan Sains, 14(02), 43–59. https://doi.org/10.54209/infosains.v14i02.4122