Comparison Of Radial Basis Function Neural Networks (RBFNN) And Autoregressive Moving Average (ARMA) Algorithms On Inflation Rate Prediction Models In Batam City
DOI:
https://doi.org/10.54209/infosains.v14i02.4713Keywords:
RBFNN, ARMA, Time Series, InflationAbstract
The inflation rate in the city of Batam from January 2023 to April 2024 continues to fluctuate, so an accurate prediction model is needed so that inflation control can be carried out optimally. In this study, we conducted a comparative analysis between the Radial Basis Function Neural Network (RBFNN) method and the Autoregressive Moving Average (ARMA) model in predicting the inflation rate. The data used is historical data on the inflation rate of Batam City from January 2009 to April 2024. The results of the analysis show that the RBFN method with an MSE value of 0.239 is able to provide a more accurate prediction compared to the ARMA model (2.3) with an MSE value of 0.246 in predicting the inflation rate in Batam City. This is due to the RBFN's ability to capture complex and non-linear patterns contained in inflation data. In addition, the performance of RBFNN is also affected by the number of neurons and the basis function used. Thus, the results of this study show that the RBFN method can be an effective and efficient alternative in predicting the inflation rate in Batam City.
Downloads
References
Alida, M., & Mustikasari, M. (2020). Rupiah Exchange Prediction of US Dollar Using Linear, Polynomial, and Radial Basis Function Kernel in Support Vector Regression. Jurnal Online Informatika, 5(1), 53–60. https://doi.org/10.15575/join.
Ambarwati, I. (2023). Metode Radial Basis Function Neural Network (RBFNN) untuk Peramalan Kunjungan Wisatawan dengan Perbandingan Kombinasi Fungsi Pelatihan. PRISMA, Prosiding Seminar Nasional Matematika 6. Prisma, 6, 687–693. https://journal.unnes.ac.id/sju/index.php/prisma/
Araujo, G. S., & Gaglianone, W. P. (2023). Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models. Latin American Journal of Central Banking, 4(2), 100087. https://doi.org/10.1016/j.latcb.2023.100087
Borman, R. I., Ahmad, I., & Rahmanto, Y. (2022). Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function. Bulletin of Informatics and Data Science, 1(1), 6. https://doi.org/10.61944/bids.v1i1.3
Dalimunthe, D. Y., Sulistiana, I., Saputra, D., Aldila, H., & Pririzki, S. J. (2023). Projection of the Inflation Rate in Pangkalpinang City Using the Autoregressive Moving Average (Arma). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(3), 1513–1520. https://doi.org/10.30598/barekengvol17iss3pp1513-1520
Deng, Y., Zhou, X., Shen, J., Xiao, G., Hong, H., Lin, H., Wu, F., & Liao, B. Q. (2021). New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water. Science of the Total Environment, 772, 145534. https://doi.org/10.1016/j.scitotenv.2021.145534
Dong, S., & Franses, P. H. (2023). Inflation Forecast Combination : The Effectiveness Of Shapley Values Using ARMA Models. July.
Du, K. L., & Swamy, M. N. S. (2014). Neural networks and statistical learning. In Neural Networks and Statistical Learning (Vol. 9781447155, Issue December 2014). https://doi.org/10.1007/978-1-4471-5571-3
Hamdani, H., Lianti, L., & Dasari, F. (2020). Pengaruh Inflasi, Harga Emas Dan Jumlah Nasabah Terhadap Penyaluran Pembiayaan Ar-Rahn Pada Pt Pegadaian Syariah Unit Geudong. Ekonis: Jurnal Ekonomi Dan Bisnis, 22(1). https://doi.org/10.30811/ekonis.v22i1.1911
Hemageetha, N., & Nasira, G. M. (2013). Radial basis function model for vegetable price prediction. https://doi.org/10.1109/ICPRIME.2013.6496514
Hong, H., Zhang, Z., Guo, A., Shen, L., Sun, H., Liang, Y., Wu, F., & Lin, H. (2020). Radial basis function artificial neural network (RBF ANN) as well as the hybrid method of RBF ANN and grey relational analysis able to well predict trihalomethanes levels in tap water. Journal of Hydrology, 591(April), 125574. https://doi.org/10.1016/j.jhydrol.2020.125574
Izonin, I., Tkachenko, R., Dronyuk, I., Tkachenko, P., Gregus, M., & Rashkevych, M. (2021). Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method. Mathematical Biosciences and Engineering, 31(1), 2599–2613. https://doi.org/10.3934/MBE.2021132
Kasim, R., Engka, D. S. M., Siwu, H. D., Inflasi, A. P., Dan, P., Pemerintah, B., Kasim, R., Pembangunan, E., Ekonomi, F., Bisnis, D., Kasim, R., Engka, D. S. M., & Siwu, H. D. (2021). Analisis Pengaruh Inflasi, Pengangguran Dan Belanja Pemerintah Terhadap Kemiskinan Di Kota Manado. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis Dan Akuntansi, 9(1), 953–963.
Madhiarasan, M. (2020). Accurate prediction of different forecast horizons wind speed using a recursive radial basis function neural network. Protection and Control of Modern Power Systems, 5(1). https://doi.org/10.1186/s41601-020-00166-8
Maghfiroh, L., Askandar, N. S., & Mahsuni, A. W. (2021). Analisis Pengaruh Inflasi, Tingkat Suku Bunga, dan Nilai Tukar Rupiah terhadap Indeks Harga Saham Gabungan di BEI Selama Pandemi. Jurnal Ilmiah Riset Akuntansi, 10(3), 1–11. http://riset.unisma.ac.id/index.php/jra/article/view/10385.
Mahmudy, W. F., Alfiyatin, A. N., Ananda, C. F., & Widodo, A. W. (2021). Inflation Rate Forecasting Using Extreme Learning Machine and Improved Particle Swarm Optimization. International Journal of Intelligent Engineering and Systems, 14(6), 95–104. https://doi.org/10.22266/ijies2021.1231.09
Maqsoom, A., Prasittisopin, L., Musarat, M. A., Ullah, F., & Alqahtani, F. K. (2024). Construction Price Index Prediction through ARMA with Inflation Effect: Case of Thailand Construction Industry. Buildings, 14(5), 1243. https://doi.org/10.3390/buildings14051243
Pazouki, G., Golafshani, E. M., & Behnood, A. (2022). Predicting the compressive strength of self-compacting concrete containing Class F fly ash using metaheuristic radial basis function neural network. Structural Concrete, 23(2), 1191–1213. https://doi.org/10.1002/suco.202000047
Permata Sari, R. I. (2022). Fdi Dan Inflasi Mempengaruhi Pertumbuhan Industri Kosmetik Di Indonesia. JABE (Journal of Applied Business and Economic), 8(4), 451. https://doi.org/10.30998/jabe.v8i4.14440
Rachmadani, Y. S. P. (2019). Artikel Ilmiah Artikel Ilmiah. STIE Perbanas Surabaya, 022, 0–16.
Rad, D., Magulod, G. C., Balas, E., Roman, A., Egerau, A., Maier, R., Ignat, S., Dughi, T., Balas, V., Demeter, E., Rad, G., & Chis, R. (2022). A Radial Basis Function Neural Network Approach to Predict Preschool Teachers’ Technology Acceptance Behavior. Frontiers in Psychology, 13(June), 1–11. https://doi.org/10.3389/fpsyg.2022.880753
Rifa’i, A. (2020). Optimasi Fuzzy Artificial Neural Network dengan Algoritma Genetika untuk Prediksi Harga Crude Palm Oil. Jurnal Teknik Informatika Dan Sistem Informasi, 6(2), 234–241. https://doi.org/10.28932/jutisi.v6i2.2617
S, W. (2019). Prediksi Inflasi Indonesia Memakai Model ARIMA dan Artificial Neural Network. Jurnal Tata Kelola Dan Kerangka Kerja Teknologi Informasi, 5(1). https://doi.org/10.34010/jtk3ti.v5i1.2297
Sari, S. P., & Nurjannah, S. (2023). Analisis Pengaruh Nilai Tukar, Jumlah Uang Beredar dan BI Rate Terhadap Inflasi di Indonesia dan Dampaknya Terhadap Daya Beli Masyarakat. AKTIVA: Journal of Accountancy and Management, 1(1), 21–29. https://doi.org/10.24260/aktiva.v1i1.1015
Xin, W., Zheng, W., Qin, J., Wei, S., & Ji, C. (2021). Energy Management of Fuel Cell Vehicles Based on Model Prediction Control Using Radial Basis Functions. Journal of Sensors, 2021. https://doi.org/10.1155/2021/9985063
Zhou, Y. (2020). Modeling Nonlinear Processes Using the Radial Autoregressive Models. 27, 1600–1604.