Classification Of Superstructure Damage In School Buildings In Nusa Penida Bali Using YOLO V7

Authors

  • Anak Agung Gede Oka Kessawa Adnyana Program Studi Informatika, Institut Bisnis dan Teknologi Indonesia, Bali
  • I Gede Indra Mahardika Program Studi Informatika, Institut Bisnis dan Teknologi Indonesia, Bali
  • Gde Bagus Andhika Wicaksana Program Studi Teknik Arsitektur, Universitas Warmadewa, Bali
  • I Nyoman Darma Kotama Program Studi Sistem Komputer, Institut Bisnis dan Teknologi Indonesia, Bali

Keywords:

Structural Damage Detection, YOLOv7, Building Assessment, Artificial Intelligence

Abstract

Structural damage in school buildings poses significant risks to safety and education quality, particularly in remote areas with limited maintenance resources. This study develops a YOLOv7-based model to detect building pillars and classify structural damages, focusing on school buildings in Nusa Penida, Bali. A dataset of 156 images, derived from an initial 521 images collected during field visits, was curated to include both damaged and intact pillars. Preprocessing and augmentation techniques, including resizing and rotation, were applied to optimize the dataset. Training was conducted over 55 epochs using Google Colab with a T4 GPU, incorporating parameter tuning to address dataset imbalance. Confidence thresholds were set at 0.7 for pillars and 0.2 for rebar detection to enhance sensitivity to underrepresented damage classes. Evaluation metrics, including the F1-score and confusion matrix, confirmed the model’s accuracy and robustness in detecting and classifying structural damages. The results demonstrate the model's potential for real-world applications in damage assessment, particularly in resource-limited settings. Future research should focus on expanding datasets, incorporating multi-class classification, and integrating real-time detection and drone-based imagery to enhance scalability and efficiency. This work contributes to developing efficient, AI-driven solutions for structural health monitoring in critical infrastructure.

Downloads

Download data is not yet available.

References

Abuzairi, T., Nurdina Widanti, Arie Kusumaningrum, & Yeni Rustina. (2021). Implementasi Convolutional Neural Network Untuk Deteksi Nyeri Bayi Melalui Citra Wajah Dengan YOLO. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 624–630. https://doi.org/10.29207/resti.v5i4.3184

Adityah, D. A. (2021). Deteksi dan Klasifikasi Keretakan Jalan Menggunakan Metode You Only Look Once [Master’s Thesis, Universitas Sumatera Utara]. https://repositori.usu.ac.id/handle/123456789/47311

Amalia, Y. K. (2023). Klasifikasi Kerusakan Jalan Menggunakan Algoritma YOLO [Politeknik Negeri Ujung Pandang]. https://repository.poliupg.ac.id/id/eprint/9470/

BALIPOST.com. (2024). Perbaikan Puluhan Gedung SD Rusak Tak Kunjung Beres, Terparah di Nusa Penida. https://www.balipost.com/news/2024/03/20/392562/Perbaikan-Puluhan-Gedung-SD-Rusak...html

CV. YOGAWIDYA SARANA DESAIN. (2023a). Laporan Akhir Jasa Konsultasi Non Konstruksi Pembuatan Data Base Bangunan Gedung Sekolah Dasar.

CV. YOGAWIDYA SARANA DESAIN. (2023b). Laporan Akhir Pembuatan Database Bangunan Gedung Sekolah Menengah Pertama Kabupaten Karangasem.

Gaho, R. L., Ali, I. T., & Prakasa, E. (2024). Klasifikasi Kualitas Permukaan Jalan Raya Menggunakan Metode CNN Berbasis Arsitektur Xception. INOVTEK Polbeng - Seri Informatika, 9(1), 1–10. https://doi.org/10.35314/isi.v9i1.4213

Guntara, R. G. (2023). Deteksi Atap Bangunan Berbasis Citra Udara Menggunakan Google Colab dan Algoritma Deep Learning YOLOv7. Jurnal Manajemen Sistem Informasi (JMASIF), 2(1), Art. no. 1. https://doi.org/10.59431/jmasif.v2i1.156

Kementerian Pekerjaan Umum dan Perumahan Rakyat. (2018). Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 22/PRT/M/2018 Tahun 2018 tentang Pembangunan Bangunan Gedung Negara. https://jdih.pu.go.id/detail-dokumen/2594/1#div_cari_detail

Nurqolbiah, F., Nurmaini, S., & Saputra, T. (2023). Deteksi Lesi Pra-Kanker Serviks Pada Citra Kolposkopi Menggunakan Convolutional Neural Network dengan Arsitektur YOLOv7. Jurnal Sistem Komputer Dan Informatika (JSON), 5(2), Art. no. 2. https://doi.org/10.30865/json.v5i2.7152

Radar Bali. (2024). Duh, Anggaran Pas-Pasan, 50 Persen Sekolah Rusak di Klungkung Ditangani Bertahap. https://radarbali.jawapos.com/pendidikan/70867233/duh-anggaran-paspasan-50-persen-sekolah-rusak-di-klungkung-ditangani-bertahap

radarbali.com. (2024). Di Jembrana Puluhan Sekolah Rusak Belum Dapat Alokasi Anggaran, Ini Penyebabnya. https://radarbali.jawapos.com/pendidikan/704126173/di-jembrana-puluhan-sekolah-rusak-belum-dapat-alokasi-anggaran-ini-penyebabnya

Saputra, D. A., Istiadi, I., & Rahman, A. Y. (2024). Deteksi Kesegaran Ikan Layur Berdasarkan Citra Mata Menggunakan YOLOv8. JATI: Jurnal Mahasiswa Teknik Informatika, 8(5), Art. no. 5. https://doi.org/10.36040/jati.v8i5.11020

Tabelak, D. (2024). Duh, Puluhan Sekolah di Karangasem dalam Kondisi Rusak Berat. https://radarbali.jawapos.com/dwipa/70861054/duh-puluhan-sekolah-di-karangasem-dalam-kondisi-rusak-berat

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv. https://doi.org/10.48550/arXiv.2207.02696

Wu, P. (2022). Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm. Engineering Structures, 272, 114962. https://doi.org/10.1016/j.engstruct.2022.114962

Downloads

Published

2024-11-27

How to Cite

Adnyana, A. A. G. O. K., Mahardika, I. G. I., Wicaksana, G. B. A., & Kotama, I. N. D. (2024). Classification Of Superstructure Damage In School Buildings In Nusa Penida Bali Using YOLO V7. Jurnal Info Sains : Informatika Dan Sains, 14(04), 678–687. Retrieved from https://ejournal.seaninstitute.or.id/index.php/InfoSains/article/view/5720