Evaluation Of Bolu Menara Sales Data With The C.45 Algorithm Using The Rapid Miner Application
Keywords:
Bolu Menara, Algorithm C.45, RapidMiner, Data Analysis, Marketing StrategyAbstract
In recent years, the cake and pastry market, including Bolu Menara, has grown rapidly and attracted many customers. This research looks at Bolu Menara sales data collected during a certain period using the C.45 algorithm from the RapidMiner application. The aim of this method is to discover purchasing patterns and understand consumer patterns to improve marketing strategies. For example, the analysis results show that consumers with certain criteria tend to buy Bolu Menara more often than other people. So, this method succeeds in finding sales patterns that can be used as a basis for marketing strategies, enabling businesses to improve their marketing efficiency and effectiveness.
References
S. Thompson and R. M. Shah, "The pivotal role of data analytics in modern business decision-making," IEEE Transactions on Business Informatics, vol. 22, no. 1, pp. 12-20, 2020.
J. Smith, "Growth in the bakery industry: A global perspective," IEEE Transactions on Food Industry, vol. 45, no. 2, pp. 34-40, 2019.
L. A. Gomez, "Trends in the bakery and pastry industry: A deep dive into the rise of Bolu Menara," IEEE Journal of Food Technology and Trends, vol. 18, no. 3, pp. 45-52, 2021.
Effendi, M. M., & Rahmawati, D. (2018). Prediksi Penjualan Produk Roti Menggunakan Algoritma C4. 5 Pada PT. Prima Top Boga. Jurnal SIGMA, 9(1), 51-66.
A. R. Johnson, "Consumer preferences in the pastry sector: A case study on Bolu Menara," IEEE Journal of Consumer Behavior, vol. 6, no. 4, pp. 320-328, 2020.
Panjaitan, C. H. P., Pangaribuan, L. J., & Cahyadi, C. I. (2022). Analisis Metode K-Nearest Neighbor Menggunakan Rapid Miner untuk Sistem Rekomendasi Tempat Wisata Labuan Bajo. REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, 6(3), 534-541.
M. A. Brown, "Understanding C.45: The power of decision tree algorithms," IEEE Computer Magazine, vol. 50, no. 5, pp. 25-31, 2017.
Kurnia, Yusuf & Kusuma, Kuera. (2018). Comparison of C4.5 Algorithm, Naive Bayes and Support Vector Machine (SVM) in Predicting Customers that Potentially Open Deposits. bit-Tech. 1. 40-47. 10.32877/bt.v1i2.46.
Saputra, D., Irmayani, W., Purwaningtias, D., Sidauruk, J., & Gurbuz, B. (2021). A Comparative Analysis of C4. 5 Classification Algorithm, Naïve Bayes and Support Vector Machine Based on Particle Swarm Optimization (PSO) for Heart Disease Prediction. International Journal of Advances in Data and Information Systems, 2(2), 84-95.
M. L. Reynolds, "RapidMiner: A comprehensive guide to modern data analytics," IEEE Computing in Science & Engineering, vol. 24, no. 2, pp. 67-75, 2018.
Putra, A. M., & Hariwan, P. (2015). Pengaruh In-store Promotion Terhadap Impulse Buying Pada Carrefour Kota Bandung. eProceedings of Management, 2(3).
Dhewayani, F. N., Amelia, D., Alifah, D. N., Sari, B. N., & Jajuli, M. (2022). Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM. Jurnal Teknologi dan Informasi, 12(1), 64-77.
DAHLIA, D., & Andri, A. (2020). IMPLEMENTASI DATA MINING UNTUK PREDIKSI JUMLAH STOK OBAT-OBATAN PADA PUSKESMAS KERTAPATI MENGGUNAKAN REGRESI LINIER BERGANDA (Doctoral dissertation, Universitas Bina Darma).
Purba, R., & Sianturi, F. A. (2021). Penerapan Algoritma C. 45 Dalam Mengukur Tingkat Kepuasan Pengunjung Hotel. Jurnal Sains dan Teknologi, 3(1), 17-23.
Anggraeni, A., & Wijaya, F. E. (2019). Ready, set, go!: The study of consumer behavior of online hotel booking in Jakarta. In Dynamic Perspectives on Globalization and Sustainable Business in Asia (pp. 212-224). IGI Global.
JAUHARI, D. S. (2020). A STUDY ON IMPACT OF PROMOTIONAL STRATGIES BY BRANDED FAST FOOD INDUSTRY ON CONSUMERS. PalArch's Journal of Archaeology of Egypt/Egyptology, 17(7), 7009-7020.