IMPLEMENTATION OF NAIVE BAYES METHOD FOR GRANTING FISHERMAN BUSINESS CREDIT

Authors

  • I Gede Totok Suryawan Fakultas Teknologi dan Informatika , Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia
  • I Kadek Surya Arimbawa Fakultas Teknologi dan Informatika , Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia
  • I Gede Iwan Sudipa Fakultas Teknologi dan Informatika , Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia

Keywords:

Decision Support System, Fisherman Business Credit, Naive Bayes, Village Credit Institution

Abstract

The Lembaga Perkreditan Desa (LPD) is a village financial institution engaged in the savings and loan industry, provides credit as one of its services. Midway through 2021, the Jimbaran Traditional Village LPD issued a new credit product, the Fisherman Business Credit (KUN), to assist the Jimbaran villagers who are experiencing economic hardships due to Covid-19. The rapid increase in credit applications at the Jimbaran Traditional Village LPD, particularly for fisherman business loans, necessitates a more comprehensive analysis of incoming fisherman business loan application data to prevent a repeat of the poor credit decisions from the previous year. On the other hand, the community, especially those whose credit applications are denied, mandates transparency in the selection process for credit assessment. Current credit evaluation procedures are rife with subjectivity, necessitating software that can provide transparency by generating scores from each existing credit application using scientific methods.  In this study, a credit granting decision support system was developed that evaluates each application for a business credit line from a fisherman at LPD Desa Adat Jimbaran using the nave bayes method. Using 340 data on prospective credit recipients including loan amount, collateral value, income, expenses, time period, other obligations, and credit history, it is determined that more prospective creditors are eligible than ineligible, with 321 declared eligible and 19 declared ineligible. The average accuracy result was 94.31%, with the first experiment yielding the highest accuracy at 95.30% and the third experiment yielding the lowest accuracy at 94.67%.

Downloads

Download data is not yet available.

References

I. G. T. Suryawan and W. G. M. Negara, “Rancang Bangun Sistem Pendukung Keputusan Penerima Beasiswa Dengan Metode Profile Matching,” J. Teknol. Inf. dan Komput., vol. 7, no. 3, 2021.

G. S. Mahendra et al., SISTEM PENDUKUNG KEPUTUSAN (Teori dan Penerapannya dalam berbagai Metode). PT. Sonpedia Publishing Indonesia, 2023.

I. G. I. Sudipa et al., PENERAPAN DECISION SUPPORT SYSTEM (DSS) DALAM BERBAGAI BIDANG (Revolusi Industri 4.0 Menuju Era Society 5.0). PT. Sonpedia Publishing Indonesia, 2023.

Y. Boari, R. Megavitry, P. J. Pattiasina, H. T. Ramdani, and H. Munandar, “The Analysis Of Effectiveness Of Mobile Learning Media Usage In Train Students’ Critical Thinking Skills,” Mudir J. Manaj. Pendidik., vol. 5, no. 1, pp. 172–177, 2023.

D. Alita, I. Sari, A. R. Isnain, and S. Styawati, “Penerapan Naïve Bayes Classifier Untuk Pendukung Keputusan Penerima Beasiswa,” J. Data Min. Dan Sist. Inf., vol. 2, no. 1, pp. 17–23, 2021.

I. G. I. Sudipa, I. M. D. P. Asana, K. J. Atmaja, P. P. Santika, and D. Setiawan, “Analisis Data Kepuasan Pengguna Layanan E-Wallet Gopay Menggunakan Metode Naïve Bayes Classifier Algorithm,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 4, no. 3, pp. 726–735, 2023.

B. Kwintiana et al., DATA SCIENCE FOR BUSINESS: Pengantar & Penerapan Berbagai Sektor. PT. Sonpedia Publishing Indonesia, 2023.

D. Berrar, “Bayes’ theorem and naive Bayes classifier,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 403, p. 412, 2018.

A. Firmansyah, F. Ramadhani, and E. Fauzan, “Sistem Pendukung Keputusan Penentuan Status Karyawan Menggunakan Metode Naïve Bayes,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 2, no. 02, pp. 85–94, 2020.

M. R. Fanani, “Algoritma Naive Bayes Berbasis Forward Selection Untuk Prediksi Bimbingan Konseling Siswa,” J. Disprotek, vol. 11, no. 1, pp. 13–22, 2020.

F. K. Pratama, D. W. Widodo, and N. Shofia, “Implementasi Metode Naïve Bayes dalam Mengklasifikasi Penerima Program Keluarga Harapan (PKH) Desa Minggiran Kediri,” in Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 2021, vol. 5, no. 3, pp. 23–28.

D. Dewi and F. Satria, “Algoritma Naive Bayes Untuk Menentukan Kelayakan Pemberian Kredit Pada Adira,” PROCIDING KMSI, vol. 6, no. 1, pp. 8–13, 2018.

A. Firmansyah and F. Ramdhani, “Sistem Pendukung Keputusan Penentuan Status Karyawan Menggunakan Metode Naive Bayes (Studi Kasus: PT. Emsonic Indonesia),” J. SIGMA, vol. 11, no. 1, pp. 1–8, 2020.

T. D. Pengestuti, F. T. Anggraeny, and E. P. Mandyartha, “Rancang Bangun Sistem Pendukung Keputusan Penerimaan Karyawan Baru Menggunakan Naive Bayes Classifer (Studi Kasus PT. Sasmito),” J. Inform. dan Sist. Inf, vol. 1, no. 3, pp. 1072–1080, 2020.

V. M. M. Siregar, “Sistem Pendukung Keputusan Penentuan Insentif Bulanan Pegawai Dengan Menggunakan Metode Naïve Bayes,” Sist. J. Sist. Inf., vol. 7, no. 2, pp. 78–86, 2018.

R. Mehra, M. K. Bedi, G. Singh, R. Arora, T. Bala, and S. Saxena, “Sentimental analysis using fuzzy and naive bayes,” in Proceedings of the International Conference on Computing Methodologies and Communication, ICCMC 2017, 2018, vol. 2018-Janua, no. Iccmc, pp. 945–950. doi: 10.1109/ICCMC.2017.8282607.

G. Triyono and D. Ginting, “Comparative Analysis Performance of Naïve Bayes and K-NN Using Confusion Matrix and AUC To Predict Insurance Fraud,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 4, pp. 2293–2300, 2022.

A. B. Downey, Think Bayes. “ O’Reilly Media, Inc.,” 2021.

Downloads

Published

2023-03-29

How to Cite

Suryawan, I. G. T., Arimbawa, I. K. S., & Sudipa, I. G. I. (2023). IMPLEMENTATION OF NAIVE BAYES METHOD FOR GRANTING FISHERMAN BUSINESS CREDIT . Jurnal Info Sains : Informatika Dan Sains, 13(01), 24–32. Retrieved from https://ejournal.seaninstitute.or.id/index.php/InfoSains/article/view/2669

Most read articles by the same author(s)