Alumni Data Grouping Using the K-Means Clustering Method for Study Program Curriculum Development

Authors

  • Penda Sudarto Hasugian STMIK Pelita Nusantara
  • Jijon Raphita Sagala STMIK Pelita Nusantara
  • Lela Dwi Ani STMIK Pelita Nusantara

Keywords:

Datamining, K-means method, Data grouping, Rapid Miner

Abstract

Application of Datamining by applying the k-means clustering method to classify STMIK Pelita Nusantara alumni data as a basis for developing study program curricula that are more relevant to the needs of the world of work or industrial needs. Where the K-Means Clustering Method is used to group alumni based on similar characteristics they have, such as personal data, academic achievement, areas of expertise, and job information after graduating from college. The research data source used is graduate data for the 2021/2022 academic year. The data collection method was carried out by distributing questionnaires directly to alumni. The application of the k-means method is carried out by forming 2 groups (clusters), namely C1 = Liner and C2 = Not Linear. Data testing is also carried out using the rapid miner application. So that by grouping alumni data, it is hoped that tertiary institutions can identify the needs and preferences of alumni for the study programs followed so that they can develop study program curricula that are more targeted and in accordance with the needs of the job market.Application of Datamining by applying the k-means clustering method to classify STMIK Pelita Nusantara alumni data as a basis for developing study program curricula that are more relevant to the needs of the world of work or industrial needs. Where the K-Means Clustering Method is used to group alumni based on similar characteristics they have, such as personal data, academic achievement, areas of expertise, and job information after graduating from college. The research data source used is graduate data for the 2021/2022 academic year. The data collection method was carried out by distributing questionnaires directly to alumni. The application of the k-means method is carried out by forming 2 groups (clusters), namely C1 = Liner and C2 = Not Linear. Data testing is also carried out using the rapid miner application. So that by grouping alumni data, it is hoped that tertiary institutions can identify the needs and preferences of alumni for the study programs followed so that they can develop study program curricula that are more targeted and in accordance with the needs of the job market.

Downloads

Download data is not yet available.

References

T. Suprawoto, “Klasifikasi data mahasiswa menggunakan metode k- means untuk menunjang pemilihan strategi pemasaran,” vol. 1, no. 1, pp. 12–18, 2016.

R. Dalam and K. Baru, “Analisis Clustering K-Means Pada Pengelompokkan Hasil Tracer Study Sebagai Media Informasi Dalam Pengembangan Kurikulum Program Studi,” vol. 3, 2019.

K. Blitar, J. Timur, K. Kunci, K. K. Clustering, and K. S. Coeficient, “Penerapan Algoritma K-Means Clustering Untuk Menentukan Linieritas Pekerjaan Alumni Berdasarkan Tracer Study,” no. September, pp. 3265–3281, 2022.

U. U. Indonesia, S. Febrianti, L. Fitria, U. Samudra, L. Lama, and L. City, “PENERAPAN METODE K – MEANS CLUSTERING TERHADAP ALUMNI BERDASARKAN KUESIONER TRACER STUDY APPLICATION OF METHOD K – MEANS CLUSTERING TO ALUMNI BASED,” vol. 7, no. 2, pp. 117–122, 2021.

B. W. Nugraha, A. Mahmudi, F. S. Wahyuni, and F. T. Industri, “PENERAPAN METODE K-MEANS UNTUK PENGELOMPOKAN TINGKAT MALANG,” vol. 5, no. 2, pp. 684–692, 2021.

D. P. M and A. Fadlil, “Penerapan Clustering K-Means untuk Pengelompokan Tingkat Kepuasan Pengguna Lulusan Perguruan Tinggi,” vol. 6, pp. 1693–1700, 2022, doi: 10.30865/mib.v6i3.4191.

Y. C. Jimmy, “Perancangan Model Predıksı Performa Akademık Mahasıswa Menggunakan Algorıtma K - Means Clusterıng ( Studı Kasus : Unıversıtas Xyz ),” vol. 1, no. 1, pp. 643–649, 2021.

R. Muktiadi and A. Y. Badharudin, “Metode K-Means untuk Mengelompokkan Alumni Berdasarkan Waktu Mencari Pekerjaan,” vol. 16, no. 1, pp. 83–92, 2019.

[9] W. Lestari, “Clustering Data Mahasiswa Menggunakan Algoritma K-Means Untuk Menunjang Strategi Promosi ( Studi Kasus : STMIK Bina Bangsa Kendari ),” vol. 4, no. 2, pp. 35–48, 2019.

M. K. K-means, “Pokok Pembahasan”.

P. K. Clustering and S. Promosi, “LAPORAN AKHIR PENELITIAN Penerapan,” no. November, 2022.

I. Sumadikarta and E. Abeiza, “PENERAPAN ALGORITMA K-MEANS PADA DATA MINING UNTUK MEMILIH PRODUK DAN PELANGGAN POTENSIAL (Studi Kasus : PT Mega Arvia Utama),” J. Satya Inform., no. 1, pp. 1–12, 2014.

Z. Zulham and B. S. Hasugian, “Pengelompokan Siswa Dalam Menentukan Penerima Beasiswa Berdasarkan Prestasi Akademik Dengan Algoritma K-Means,” War. Dharmawangsa, vol. 16, no. 3, pp. 231–241, 2022, doi: 10.46576/wdw.v16i3.2220.

[S. N. Br Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 1, p. 31, 2022, doi: 10.53513/jursi.v1i1.4784.

F. Rini, N. Kahar, and Juliana, “Penerapan Algoritma K-Means Pada Pengelompokan Data Siswa Baru Berdasarkan Jurusan Di Smk Negeri 1 Kota Jambi Berbasis Web,” Semin. Nas. APTIKOM, pp. 94–99, 2016.

Downloads

Published

2023-08-29

How to Cite

Hasugian, P. S., Sagala, J. R., & Dwi Ani, L. (2023). Alumni Data Grouping Using the K-Means Clustering Method for Study Program Curriculum Development . Jurnal Info Sains : Informatika Dan Sains, 13(02), 137–144. Retrieved from https://ejournal.seaninstitute.or.id/index.php/InfoSains/article/view/2795